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Opti 501 Final Exam (12/12/2023) Time: 2 hours 
Please write your name and ID number on all the pages, then staple them together. 

Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) In the single-oscillator Lorentz model, absent the Clausius-Mossotti correction, the 
local material polarization is found to be 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔, where the material 
susceptibility at the excitation frequency 𝜔𝜔 is given by 𝜒𝜒𝑒𝑒(𝜔𝜔) = 𝜔𝜔𝑝𝑝

2 (𝜔𝜔0
2 − 𝜔𝜔2 − i𝛾𝛾𝜔𝜔)⁄ . Here, 

𝜔𝜔𝑝𝑝 = �𝑁𝑁𝑞𝑞2 (𝜀𝜀0𝑚𝑚)⁄  is the plasma frequency, 𝜔𝜔0 = �𝛼𝛼 𝑚𝑚⁄  is the resonance frequency, and 𝛾𝛾 = 𝛽𝛽 𝑚𝑚⁄  
is the damping coefficient. 

a) Explain the meaning of the parameters 𝑁𝑁, 𝑞𝑞, 𝜀𝜀0, 𝑚𝑚, 𝛼𝛼, and 𝛽𝛽. What are the units of these 
parameters in the SI (or MKSA) system of units? Also, what are the units of 𝜔𝜔𝑝𝑝, 𝜔𝜔0, and 𝛾𝛾? 

b) In the context of the Lorentz oscillator model, how does a conduction electron differ from a 
bound electron? Why is it not necessary to apply the Clausius-Mossotti correction in the case 
of the conduction electrons? 

c) Recall that 𝑱𝑱bound
(e) (𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ . The Drude model — same as the Lorentz oscillator 

model, but for conduction electrons only — defines the electrical conductivity 𝜎𝜎(𝜔𝜔) of the 
material as the proportionality coefficient between the electric current-density and the local 
electric field; that is, 𝑱𝑱(𝒓𝒓, 𝑡𝑡) = 𝜎𝜎(𝜔𝜔)𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔. How does Drude’s 𝜎𝜎(𝜔𝜔) relate to Lorentz’s 
electric susceptibility 𝜒𝜒𝑒𝑒(𝜔𝜔)? 

 
Problem 2) a) Let 𝑎𝑎 be a real number and 𝑐𝑐 = 𝑐𝑐′ + i𝑐𝑐″ a complex number. Clearly, one can 
write 𝑎𝑎 Re(𝑐𝑐) = Re(𝑎𝑎𝑐𝑐) = 𝑎𝑎𝑐𝑐′, where Re(𝑥𝑥) stands for the real part of 𝑥𝑥. By the same token, if 
𝑐𝑐1 = 𝑐𝑐1′ + i𝑐𝑐1″ and 𝑐𝑐2 = 𝑐𝑐2′ + i𝑐𝑐2″ are two arbitrary complex numbers, one should be able to write 
𝑐𝑐1′𝑐𝑐2′ = Re(𝑐𝑐1)Re(𝑐𝑐2) = Re[𝑐𝑐1Re(𝑐𝑐2)]. Use these elementary properties of real and complex 
numbers to prove that Re(𝑐𝑐1)Re(𝑐𝑐2) = ½Re[𝑐𝑐1(𝑐𝑐2 + 𝑐𝑐2∗)]. 
b) Using complex notation, let the electric and magnetic fields at a specific point in spacetime be 
𝑬𝑬(𝒓𝒓, 𝑡𝑡) and 𝑯𝑯(𝒓𝒓, 𝑡𝑡), respectively. The actual physical fields, of course, are Re(𝑬𝑬) and Re(𝑯𝑯). 
The actual (physical) Poynting vector 𝑺𝑺(𝒓𝒓, 𝑡𝑡) at the same location, being the result of a 
nonlinear operation (i.e., multiplication) must be expressed as Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡)] × Re[𝑯𝑯(𝒓𝒓, 𝑡𝑡)]. 
Writing 𝑬𝑬 = 𝑬𝑬′ + i𝑬𝑬″ and 𝑯𝑯 = 𝑯𝑯′ + i𝑯𝑯″, show that, in general, 𝑺𝑺 = Re(𝑬𝑬) × Re(𝑯𝑯) is not 
the same entity as 𝑺𝑺� = Re(𝑬𝑬 × 𝑯𝑯). 

c) Invoke the results of parts (a) and (b) to show that a correct expression for the actual (i.e., real, 
physical) Poynting vector is 

 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = ½Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)] + ½Re[𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯∗(𝒓𝒓, 𝑡𝑡)]. 

d) When the electromagnetic field is monochromatic (i.e., has a single frequency, say, 𝜔𝜔0), one 
can write the complex fields as 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔0𝜔𝜔 and 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯(𝒓𝒓)𝑒𝑒−i𝜔𝜔0𝜔𝜔, with 𝑬𝑬(𝒓𝒓) 
and 𝑯𝑯(𝒓𝒓) being complex. Show that the Poynting vector of part (c) may now be written as 

 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓)] cos(2𝜔𝜔0𝑡𝑡) + ½Im[𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓)] sin(2𝜔𝜔0𝑡𝑡) + ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)]. 
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e) By definition, the time-averaged value of a function 𝑓𝑓(𝑡𝑡) is 〈𝑓𝑓(𝑡𝑡)〉 = (𝑡𝑡2 − 𝑡𝑡1)−1 ∫ 𝑓𝑓(𝑡𝑡)d𝑡𝑡𝑡𝑡2
𝑡𝑡1

. 
The oscillatory nature of sinusoidal functions is such that their time-averaged values over a 
single period 𝑇𝑇 = 2𝜋𝜋 (2𝜔𝜔0)⁄  (or over integer-multiples of 𝑇𝑇) should vanish. Show that, upon 
period-averaging, 〈cos(2𝜔𝜔0𝑡𝑡)〉 = 〈sin(2𝜔𝜔0𝑡𝑡)〉 = 0. Conclude that, for monochromatic fields, 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)]. 
 
Problem 3) A homogeneous, 𝑝𝑝-polarized plane-wave of 
frequency 𝜔𝜔 is obliquely incident at the flat interface between 
two linear, isotropic, homogeneous media. Both media are 
non-magnetic; that is, they have 𝜇𝜇(𝜔𝜔) = 1. While the relative 
permittivity 𝜀𝜀(𝜔𝜔) of the incidence medium is 𝑛𝑛02, a real-
valued and positive number, that of the transmittance medium 
is 𝑛𝑛12, which is generally a complex number, albeit one whose 
imaginary part is non-negative. The angle of incidence is 𝜃𝜃, 
the speed of light in vacuum is 𝑐𝑐 = (𝜇𝜇0𝜀𝜀0)−½, and the 
impedance of free space is 𝑍𝑍0 = (𝜇𝜇0 𝜀𝜀0⁄ )½. 

a) Invoking the dispersion relation 𝒌𝒌 ∙ 𝒌𝒌 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔) as well as Maxwell’s 1st and 3rd 
equations, namely, 𝒌𝒌 ∙ 𝑬𝑬0 = 0 and 𝒌𝒌 × 𝑬𝑬0 = 𝜇𝜇0𝜔𝜔𝑯𝑯0, write the complete expressions for the 
incident, reflected, and transmitted plane-waves. Incorporate the Fresnel reflection and 
transmission coefficients for 𝑝𝑝-polarized light, namely, 𝜌𝜌𝑝𝑝 = 𝐸𝐸0𝑥𝑥

(r) 𝐸𝐸0𝑥𝑥
(i)�  and 𝜏𝜏𝑝𝑝 = 𝐸𝐸0𝑥𝑥

(t) 𝐸𝐸0𝑥𝑥
(i)� , in the 

formulas, so that the only field amplitude remaining in your expressions is 𝐸𝐸0𝑥𝑥
(i). 

b) Write the two boundary conditions at the interfacial 𝑥𝑥𝑥𝑥-plane in the form of continuity 
equations for the components of the 𝑬𝑬 and 𝑯𝑯 fields that are parallel to the 𝑥𝑥𝑥𝑥-plane. 

c) Recalling that the relative permittivity of a linear, isotropic, homogeneous medium is related 
to its dielectric susceptibility via 𝜀𝜀(𝜔𝜔) = 1 + 𝜒𝜒𝑒𝑒(𝜔𝜔), write an expression for the material 
polarization 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) of the transmittance medium. Show that the 
bound electric charge-density 𝜌𝜌bound

(e)  is zero everywhere inside this medium. Proceed to find 
an expression for the bound electric current-density 𝑱𝑱bound

(e)  inside the transmittance medium. 
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