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Opti 501 Final Exam Solutions 12/12/2023 

Problem 1) a) 𝑁𝑁 is the number of oscillating electrons per unit volume; its SI units are [1 m3⁄ ]. 

𝑞𝑞 is the effective charge of the oscillating particle (typically an electron); its units are [coulomb]. 

𝜀𝜀0 is the permittivity of free space; its units are [farad m⁄ ]. 

𝑚𝑚 is the effective mass of the oscillating particle (typically an electron); its units are [kg]. 

𝛼𝛼 is the spring constant. The model assumes that a spring connects the oscillating particle to the 
atomic/molecular nucleus (or the underlying lattice). 𝛼𝛼 is the proportionality coefficient 
between the restoring force acting on the particle and the particle’s displacement from 
equilibrium. The SI units of 𝛼𝛼 are [newton m⁄ ]. 

𝛽𝛽, the friction coefficient, is the proportionality constant relating the overall frictional force 
acting on the oscillating particle to the particle’s instantaneous velocity. The SI units of 𝛽𝛽 are 
[newton ∙ sec m⁄ ]. 

The plasma frequency 𝜔𝜔𝑝𝑝, the resonance frequency 𝜔𝜔0, and the damping coefficient 𝛾𝛾, all 
have the units of frequency, namely, [1 sec⁄ ]. This should be clear from the way these 
parameters appear in the mathematical expression of 𝜒𝜒𝑒𝑒(𝜔𝜔). 

b) Conduction electrons differ from bound electrons in that they are not connected to a nucleus 
(or to an underlying lattice) by a fictitious spring that would apply a restoring force to the 
electron. Therefore, for a conduction electron, the spring constant 𝛼𝛼 is essentially zero, which 
makes the resonance frequency 𝜔𝜔0 equal to zero as well. 

The Clausius-Mossotti correction is intended to remove the contribution of the local electric 
field 𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 to the restoring force that acts on the oscillating particle — i.e., that part of the 
local 𝐸𝐸-field that is considered to be the self-field. This is because the Lorentz oscillator model 
incorporates an overall restoring force by allowing for a spring, whose spring constant is 𝛼𝛼. 
However, for conduction electrons, no such spring has been assumed and, therefore, there is no 
chance of double-counting the restoring force. Consequently, the Drude model of the conduction 
electron (i.e., the Lorentz oscillator model in which 𝜔𝜔0 is set to zero) has no need for correction. 

c) Given 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔, the electric current density will be 

 𝑱𝑱(𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ = −i𝜔𝜔𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔       →           𝜎𝜎(𝜔𝜔) = −i𝜔𝜔𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔). 

In the Drude model, we have 𝜔𝜔0 = 0. Consequently, 𝜒𝜒𝑒𝑒(𝜔𝜔) = −𝜔𝜔𝑝𝑝
2 (𝜔𝜔2 + i𝛾𝛾𝜔𝜔)⁄ , which leads to 

 𝜎𝜎(𝜔𝜔) = i𝜀𝜀0𝜔𝜔𝑝𝑝
2 (𝜔𝜔 + i𝛾𝛾)⁄ = (𝑁𝑁𝑞𝑞2 𝑚𝑚⁄ ) (𝛾𝛾 − i𝜔𝜔)⁄ . 

One can readily verify that the units of 𝜎𝜎(𝜔𝜔) are [ampere (volt ∙ m)⁄ ], i.e., the units of the 
current-density [ampere m2⁄ ] divided by those of the electric field [volt m⁄ ]. The electrical 
conductivity 𝜎𝜎(𝜔𝜔) is related to electric resistance, whose units are [volt ampere⁄ ] or ohm [Ω]. 
Thus, the units of 𝜎𝜎(𝜔𝜔) may also be described as [1 (Ω ∙ m)⁄ ]. 

Problem 2) a) Considering that 𝑐𝑐2∗ = 𝑐𝑐2′ − i𝑐𝑐2″, the real part of 𝑐𝑐2 can be written as ½(𝑐𝑐2 + 𝑐𝑐2∗). 
Therefore, Re(𝑐𝑐1)Re(𝑐𝑐2) = Re[𝑐𝑐1Re(𝑐𝑐2)] = ½Re[𝑐𝑐1(𝑐𝑐2 + 𝑐𝑐2∗)]. 

b) 𝑺𝑺� = Re(𝑬𝑬 × 𝑯𝑯) = Re[(𝑬𝑬′ + i𝑬𝑬″) × (𝑯𝑯′ + i𝑯𝑯″)] 

 = Re[(𝑬𝑬′ × 𝑯𝑯′ − 𝑬𝑬″ × 𝑯𝑯″) + i(𝑬𝑬′ × 𝑯𝑯″ + 𝑬𝑬″ × 𝑯𝑯′)] = 𝑬𝑬′ × 𝑯𝑯′ − 𝑬𝑬″ × 𝑯𝑯″. (1) 
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Clearly, 𝑺𝑺�  differs from 𝑺𝑺 = Re(𝑬𝑬) × Re(𝑯𝑯) = 𝑬𝑬′ × 𝑯𝑯′, because an additional term, 𝑬𝑬″ × 𝑯𝑯″, 
appears in the above expression of 𝑺𝑺� . 

c) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Re(𝑬𝑬) × Re(𝑯𝑯) = Re(𝑬𝑬) × ½(𝑯𝑯 + 𝑯𝑯∗) = ½Re[𝑬𝑬 × (𝑯𝑯 + 𝑯𝑯∗)] 

 = ½Re(𝑬𝑬 × 𝑯𝑯 + 𝑬𝑬 × 𝑯𝑯∗) = ½Re(𝑬𝑬 × 𝑯𝑯) + ½Re(𝑬𝑬 × 𝑯𝑯∗). (2) 

d)  𝑺𝑺(𝒓𝒓, 𝑡𝑡) = ½Re�𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 × 𝑯𝑯(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔� + ½Re�𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 × 𝑯𝑯∗(𝒓𝒓)𝑒𝑒+i𝜔𝜔𝜔𝜔� 

 = ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓)(cos 2𝜔𝜔𝑡𝑡 − i sin 2𝜔𝜔𝑡𝑡)] + ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)] 

 = ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓)] cos(2𝜔𝜔𝑡𝑡) + ½Im[𝑬𝑬(𝒓𝒓) × 𝑯𝑯(𝒓𝒓)] sin(2𝜔𝜔𝑡𝑡) 

 +½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)]. (3) 

e) 〈cos(2𝜔𝜔0𝑡𝑡)〉 = 𝑇𝑇−1 ∫ cos(2𝜔𝜔0𝑡𝑡) d𝑡𝑡𝑡𝑡0+𝑇𝑇

𝑡𝑡0
= (2𝜔𝜔0𝑇𝑇)−1 sin(2𝜔𝜔0𝑡𝑡)|𝑡𝑡=𝑡𝑡0

𝑡𝑡0+𝑇𝑇 

 = (2𝜔𝜔0𝑇𝑇)−1[sin(2𝜔𝜔0𝑡𝑡0 + 2𝜋𝜋) − sin(2𝜔𝜔0𝑡𝑡0)] = 0. (4) 

A similar calculation shows that 〈sin(2𝜔𝜔0𝑡𝑡)〉 = 0. Substitution into Eq.(3) now yields 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re[𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)]. (5) 

Problem 3) a) From the generalized Snell’s law, we have 𝜔𝜔(i) = 𝜔𝜔(r) = 𝜔𝜔(t) = 𝜔𝜔, 𝑘𝑘𝑥𝑥(i) = 𝑘𝑘𝑥𝑥(r) =
𝑘𝑘𝑥𝑥(t) = 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦(i) = 𝑘𝑘𝑦𝑦(r) = 𝑘𝑘𝑦𝑦(t) = 𝑘𝑘𝑦𝑦. Since the plane of incidence is chosen to be the 𝑥𝑥𝑥𝑥-plane, 
we have 𝑘𝑘𝑦𝑦 = 0. Since the incident plane-wave is said to be homogeneous, the dispersion 
relation yields |𝒌𝒌(i)| = 𝑛𝑛0𝜔𝜔 𝑐𝑐⁄  and, therefore, 𝑘𝑘𝑥𝑥 = (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃. Since the incident plane-wave 
is downward propagating, we have 𝑘𝑘𝑧𝑧(i) = −(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃. Similar arguments can be used to 
obtain the expressions of 𝑘𝑘𝑧𝑧(r) and 𝑘𝑘𝑧𝑧(t). Consequently, 

 𝒌𝒌(i) = (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� − cos 𝜃𝜃 𝒛𝒛�), (1) 

 𝒌𝒌(r) = (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ )(sin𝜃𝜃 𝒙𝒙� + cos 𝜃𝜃 𝒛𝒛�), (2) 

 𝒌𝒌(t) = (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ )�sin𝜃𝜃 𝒙𝒙� − �(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 𝒛𝒛��. (3) 

The incident 𝐸𝐸-field is written as 𝑬𝑬(i)(𝒓𝒓, 𝑡𝑡) = (𝐸𝐸0𝑥𝑥
(i)𝒙𝒙� + 𝐸𝐸0𝑧𝑧

(i)𝒛𝒛�) exp[i(𝒌𝒌(i) ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)]. Maxwell’s 
1st equation now relates the 𝑥𝑥-component of the 𝐸𝐸-field to its 𝑥𝑥-component, as follows: 

 𝜵𝜵 ∙ 𝑬𝑬(i)(𝒓𝒓, 𝑡𝑡) = 0  →   𝒌𝒌(i) ∙ 𝑬𝑬0
(i) = 0 →  𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥

(i) + 𝑘𝑘𝑧𝑧
(i)𝐸𝐸0𝑧𝑧

(i) = 0  →   𝐸𝐸0𝑧𝑧
(i) = (tan𝜃𝜃)𝐸𝐸0𝑥𝑥

(i). (4) 

Similar expressions are found for 𝐸𝐸0𝑧𝑧
(r) and 𝐸𝐸0𝑧𝑧

(t); that is, 

 𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥
(r) + 𝑘𝑘𝑧𝑧(r)𝐸𝐸0𝑧𝑧

(r) = 0    →     𝐸𝐸0𝑧𝑧
(r) = −(tan𝜃𝜃)𝐸𝐸0𝑥𝑥

(r), (5) 

 𝑘𝑘𝑥𝑥𝐸𝐸0𝑥𝑥
(t) + 𝑘𝑘𝑧𝑧(t)𝐸𝐸0𝑧𝑧

(t) = 0    →     𝐸𝐸0𝑧𝑧
(t) = (sin𝜃𝜃)𝐸𝐸0𝑥𝑥

(t)

�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
. (6) 

For each plane-wave, the magnetic field 𝑯𝑯(𝒓𝒓, 𝑡𝑡) has only one component along the 𝑦𝑦-axis. 
This component can be found from Maxwell’s 3rd equation, as follows: 

 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄  →  (𝑘𝑘𝑥𝑥𝒙𝒙� + 𝑘𝑘𝑧𝑧𝒛𝒛�) × (𝐸𝐸0𝑥𝑥𝒙𝒙� + 𝐸𝐸0𝑧𝑧𝒛𝒛�) = 𝜇𝜇0𝜔𝜔𝑯𝑯0  →  𝐻𝐻0𝑦𝑦 = (𝜇𝜇0𝜔𝜔)−1(𝑘𝑘𝑧𝑧𝐸𝐸0𝑥𝑥 − 𝑘𝑘𝑥𝑥𝐸𝐸0𝑧𝑧). (7) 
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The general expression for a 𝑝𝑝-polarized plane-wave’s 𝐻𝐻-field is 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝐻𝐻0𝑦𝑦𝒚𝒚� 𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔). 
The various 𝐻𝐻0𝑦𝑦 are found from Eq.(7) with the aid of Eqs.(1), (2), (3), (5), (6) to be 

 𝐻𝐻0𝑦𝑦
(i) = (𝜇𝜇0𝜔𝜔)−1[−(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃 − (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃 tan𝜃𝜃]𝐸𝐸0𝑥𝑥

(i) = − 𝑛𝑛0𝐸𝐸0𝑥𝑥
(i)

𝑍𝑍0 cos𝜃𝜃
, (8) 

 𝐻𝐻0𝑦𝑦
(r) = (𝜇𝜇0𝜔𝜔)−1[(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃 + (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) sin𝜃𝜃 tan𝜃𝜃]𝐸𝐸0𝑥𝑥

(r) = 𝑛𝑛0𝐸𝐸0𝑥𝑥
(r)

𝑍𝑍0 cos𝜃𝜃
, (9) 

 𝐻𝐻0𝑦𝑦
(t) = (𝜇𝜇0𝜔𝜔)−1 �−(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ )�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 − (𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) sin2 𝜃𝜃

�(𝑛𝑛1 𝑛𝑛0⁄ )2−sin2 𝜃𝜃
� 𝐸𝐸0𝑥𝑥

(t) = − (𝑛𝑛12 𝑛𝑛0⁄ )𝐸𝐸0𝑥𝑥
(t)

𝑍𝑍0�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
 
. (10) 

b) At the interfacial 𝑥𝑥𝑦𝑦-plane separating the incidence and transmittance media, the tangential 
component 𝐸𝐸𝑥𝑥 of the 𝐸𝐸-field must be continuous, and so does the tangential component 𝐻𝐻𝑦𝑦 of the 
𝐻𝐻-field. Recalling that 𝜌𝜌𝑝𝑝 = 𝐸𝐸0𝑥𝑥

(r) 𝐸𝐸0𝑥𝑥
(i)�  and 𝜏𝜏𝑝𝑝 = 𝐸𝐸0𝑥𝑥

(t) 𝐸𝐸0𝑥𝑥
(i)� , we write 

 Continuity of 𝑬𝑬∥: 𝐸𝐸0𝑥𝑥
(i) + 𝐸𝐸0𝑥𝑥

(r) = 𝐸𝐸0𝑥𝑥
(t)   →   1 + 𝜌𝜌𝑝𝑝 = 𝜏𝜏𝑝𝑝. (11) 

 Continuity of 𝑯𝑯∥: 𝐻𝐻0𝑦𝑦
(i) + 𝐻𝐻0𝑦𝑦

(r) = 𝐻𝐻0𝑦𝑦
(t)  →   − 𝑛𝑛0𝐸𝐸0𝑥𝑥

(i)

𝑍𝑍0 cos𝜃𝜃
+ 𝑛𝑛0𝐸𝐸0𝑥𝑥

(r)

𝑍𝑍0 cos𝜃𝜃
= − (𝑛𝑛12 𝑛𝑛0⁄ )𝐸𝐸0𝑥𝑥

(𝑡𝑡)

𝑍𝑍0�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
 

 →    1 − 𝜌𝜌𝑝𝑝 = (𝑛𝑛1 𝑛𝑛0⁄ )2 cos𝜃𝜃
�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃

𝜏𝜏𝑝𝑝. (12) 

c) Considering that 𝑛𝑛2(𝜔𝜔) = 𝜇𝜇(𝜔𝜔)𝜀𝜀(𝜔𝜔) = 1 + 𝜒𝜒𝑒𝑒(𝜔𝜔), the material polarization within the 
transmittance medium should be written as 

 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬0
(t) exp[i(𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = 𝜀𝜀0[𝑛𝑛12(𝜔𝜔)− 1]�𝐸𝐸0𝑥𝑥

(t)𝒙𝒙� + 𝐸𝐸0𝑧𝑧
(t)𝒛𝒛��𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔)𝑒𝑒i𝑘𝑘𝑧𝑧

(t)𝑧𝑧. (13) 

The bound electric charge-density 𝜌𝜌bound
(e) (𝒓𝒓, 𝑡𝑡) = −𝜵𝜵 ∙ 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = −i𝒌𝒌 ∙ 𝑷𝑷0𝑒𝑒i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡) vanishes 

everywhere within the transmittance medium, simply because 𝒌𝒌(t) ∙ 𝑬𝑬0
(t) = 0 (in accordance with 

Maxwell’s 1st equation). As for the bound electric current-density, we will have 

 𝑱𝑱bound
(e) (𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ = −i𝜔𝜔𝜀𝜀0(𝑛𝑛12 − 1)(𝐸𝐸0𝑥𝑥

(t)𝒙𝒙� + 𝐸𝐸0𝑧𝑧
(t)𝒛𝒛�)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔)𝑒𝑒i𝑘𝑘𝑧𝑧

(t)𝑧𝑧. (14) 

The above expression can be further streamlined by substituting for 𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑧𝑧(t) from Eq.(3), 
and for 𝐸𝐸0𝑧𝑧

(t) from Eq.(6).  

Digression. If the imaginary part of 𝑛𝑛1 is taken to be positive, the imaginary part of 𝑘𝑘𝑧𝑧(t) will turn 
out to be negative. The integral of the bound current-density 𝑱𝑱bound

(e)  over the infinite depth of the 
transmittance medium can then be evaluated as follows: 

 � 𝑱𝑱bound
(e) (𝒓𝒓, 𝑡𝑡)d𝑥𝑥

0

𝑧𝑧=−∞
= −𝜀𝜀0(𝜔𝜔 𝑘𝑘𝑧𝑧(t)⁄ )(𝑛𝑛12 − 1)(𝐸𝐸0𝑥𝑥

(t)𝒙𝒙� + 𝐸𝐸0𝑧𝑧
(t)𝒛𝒛�)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔) 𝑒𝑒i𝑘𝑘𝑧𝑧

(t)𝑧𝑧�
𝑧𝑧=−∞

0
 

 = 𝜀𝜀0𝜔𝜔(𝑛𝑛12−1)𝜏𝜏𝑝𝑝
(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ )�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 �𝒙𝒙� + sin𝜃𝜃

�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
𝒛𝒛�� 𝐸𝐸0𝑥𝑥

(i)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔). (15) 

Solving Eqs.(11) and (12) for 𝜌𝜌𝑝𝑝 and 𝜏𝜏𝑝𝑝, we arrive at the Fresnel reflection and transmission 
coefficients for 𝑝𝑝-polarized light, as follows: 

 𝜌𝜌𝑝𝑝 = �(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 − (𝑛𝑛1 𝑛𝑛0⁄ )2 cos𝜃𝜃
�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 + (𝑛𝑛1 𝑛𝑛0⁄ )2 cos𝜃𝜃

 
, (16) 

 𝜏𝜏𝑝𝑝 = 2�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 
�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 + (𝑛𝑛1 𝑛𝑛0⁄ )2 cos𝜃𝜃

 
. (17) 
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In the limit when 𝑛𝑛1 → ∞, we have �(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃 → (𝑛𝑛1 𝑛𝑛0⁄ ) and 𝜏𝜏𝑝𝑝 → 2𝑛𝑛0 (𝑛𝑛1 cos𝜃𝜃)⁄ . 
The integrated current density of Eq.(15) then approaches 2𝑛𝑛0𝐸𝐸0𝑥𝑥

(i)𝒙𝒙�𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔) (𝑍𝑍0 cos𝜃𝜃)� . This can 
be interpreted as a surface-current-density 𝑱𝑱𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0−, 𝑡𝑡) residing within the skin-depth of a 
highly conductive (or absorptive) transmittance medium. In the same limit, 𝜌𝜌𝑝𝑝 → −1, resulting in 
the tangential 𝐻𝐻-field at the 𝑥𝑥𝑦𝑦-plane immediately above the interface to approach 𝐻𝐻0𝑦𝑦

(i) + 𝐻𝐻0𝑦𝑦
(r) =

−2𝑛𝑛0𝐸𝐸0𝑥𝑥
(i) (𝑍𝑍0 cos𝜃𝜃)� . Immediately below the interfacial 𝑥𝑥𝑦𝑦-plane at 𝑥𝑥 = 0−, we have, in the limit, 

 𝐻𝐻0𝑦𝑦
(t) = −

(𝑛𝑛12 𝑛𝑛0𝑍𝑍0⁄ )𝜏𝜏𝑝𝑝𝐸𝐸0𝑥𝑥
(i)

�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
→ −2𝑛𝑛0𝐸𝐸0𝑥𝑥

(i) (𝑍𝑍0 cos 𝜃𝜃)� . (18) 

Consequently, the tangential 𝐻𝐻-field at the interface remains continuous even in the limit 
when 𝑛𝑛1 → ∞. However, in this limit, the fields inside the transmittance medium decay 
exponentially rapidly toward zero, indicating that slightly below the skin-depth (which has now 
shrunk to nothingness) the 𝐻𝐻-field vanishes. The discontinuity of the tangential 𝐻𝐻-field across 
the skin-depth is thus seen to be equal in magnitude and perpendicular in direction to the 
aforementioned surface-current-density 𝑱𝑱𝑠𝑠. 

It is also worthwhile to examine the boundary condition associated with the perpendicular 
𝐷𝐷-field across the interfacial plane. Given that 𝑫𝑫 = 𝜀𝜀0𝜀𝜀(𝜔𝜔)𝑬𝑬 = 𝜀𝜀0𝑛𝑛2𝑬𝑬, we will have 

 𝐷𝐷⊥(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0+, 𝑡𝑡) = 𝜀𝜀0𝑛𝑛02(𝐸𝐸0𝑧𝑧
(i) + 𝐸𝐸0𝑧𝑧

(r))𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥−𝜔𝜔𝜔𝜔) = 𝜀𝜀0𝑛𝑛02 tan𝜃𝜃 (1 − 𝜌𝜌𝑝𝑝)𝐸𝐸0𝑥𝑥
(i)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔), (19) 

 𝐷𝐷⊥(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0−, 𝑡𝑡) = 𝜀𝜀0𝑛𝑛12𝐸𝐸0𝑧𝑧
(t)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥−𝜔𝜔𝜔𝜔) = 𝜀𝜀0𝑛𝑛12(sin𝜃𝜃)𝜏𝜏𝑝𝑝

�(𝑛𝑛1 𝑛𝑛0⁄ )2 − sin2 𝜃𝜃
𝐸𝐸0𝑥𝑥

(i)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔). (20) 

Substituting for 𝜌𝜌𝑝𝑝 from Eq.(16) into Eq.(19), and for 𝜏𝜏𝑝𝑝 from Eq.(17) into Eq.(20), it is now 
easy to confirm that indeed 𝐷𝐷⊥ remains continuous across the interfacial 𝑥𝑥𝑦𝑦-plane. 

The bound electric charge-density was shown in part (c) to vanish everywhere inside the 
transmittance medium. A similar argument can be made for the absence of 𝜌𝜌bound

(e)  inside the 
incidence medium. However, the bound surface-charge-density is not zero at the interface 
between the two media. The material polarization of the incidence medium is given by 

 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0(𝑛𝑛02 − 1)�(𝐸𝐸0𝑥𝑥
(i)𝒙𝒙� + 𝐸𝐸0𝑧𝑧

(i)𝒛𝒛�)𝑒𝑒−i(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃𝑧𝑧 + (𝐸𝐸0𝑥𝑥
(r)𝒙𝒙�+ 𝐸𝐸0𝑧𝑧

(r)𝒛𝒛�)𝑒𝑒i(𝑛𝑛0𝜔𝜔 𝑐𝑐⁄ ) cos𝜃𝜃𝑧𝑧�𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔)step(𝑥𝑥). 
 (21) 

The bound electric charge-density 𝜌𝜌bound
(e) (𝒓𝒓, 𝑡𝑡) = −𝜵𝜵 ∙ 𝑷𝑷(𝒓𝒓, 𝑡𝑡) has an additional term arising 

from 𝜕𝜕step(𝑥𝑥) 𝜕𝜕𝑥𝑥⁄ = 𝛿𝛿(𝑥𝑥), which gives rise to a surface-charge-density at 𝑥𝑥 = 0+, as follows: 

 𝜎𝜎𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0+, 𝑡𝑡) = −𝜀𝜀0(𝑛𝑛02 − 1)(𝐸𝐸0𝑧𝑧
(i) + 𝐸𝐸0𝑧𝑧

(r))𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔). (22) 

There is also a similar surface charge-density on the surface of the transmittance medium at 
𝑥𝑥 = 0−, which is obtained from Eq.(13) as 

 𝜎𝜎𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0−, 𝑡𝑡) = 𝜀𝜀0(𝑛𝑛12 − 1)𝐸𝐸0𝑧𝑧
(t)𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔). (23) 

The total surface charge-density is the sum of Eqs.(22) and (23). The terms corresponding to 
the continuity of 𝐷𝐷⊥ add up to zero (see Eqs.(19) and (20)); what remains then is  

 𝜎𝜎𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0+, 𝑡𝑡) + 𝜎𝜎𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑥𝑥 = 0−, 𝑡𝑡) = 𝜀𝜀0(𝐸𝐸0𝑧𝑧
(i) + 𝐸𝐸0𝑧𝑧

(r) − 𝐸𝐸0𝑧𝑧
(t))𝑒𝑒i(𝑘𝑘𝑥𝑥𝑥𝑥 − 𝜔𝜔𝜔𝜔). (24) 

This equation reveals that the discontinuity of the perpendicular 𝐸𝐸-field at the interfacial 𝑥𝑥𝑦𝑦-
plane equals the (bound) surface-charge-density 𝜎𝜎𝑠𝑠 divided by 𝜀𝜀0, precisely as expected from the 
boundary condition associated with Maxwell’s 1st equation. 


