Problem 1) a) N is the number of oscillating electrons per unit volume; its SI units are $\left[1 / \mathrm{m}^{3}\right]$.
q is the effective charge of the oscillating particle (typically an electron); its units are [coulomb]. ε_{0} is the permittivity of free space; its units are [farad $/ \mathrm{m}$].
m is the effective mass of the oscillating particle (typically an electron); its units are [kg].
α is the spring constant. The model assumes that a spring connects the oscillating particle to the atomic/molecular nucleus (or the underlying lattice). α is the proportionality coefficient between the restoring force acting on the particle and the particle's displacement from equilibrium. The SI units of α are [newton $/ \mathrm{m}$].
β, the friction coefficient, is the proportionality constant relating the overall frictional force acting on the oscillating particle to the particle's instantaneous velocity. The SI units of β are [newton•sec/m].

The plasma frequency ω_{p}, the resonance frequency ω_{0}, and the damping coefficient γ, all have the units of frequency, namely, $[1 / \mathrm{sec}]$. This should be clear from the way these parameters appear in the mathematical expression of $\chi_{e}(\omega)$.
b) Conduction electrons differ from bound electrons in that they are not connected to a nucleus (or to an underlying lattice) by a fictitious spring that would apply a restoring force to the electron. Therefore, for a conduction electron, the spring constant α is essentially zero, which makes the resonance frequency ω_{0} equal to zero as well.

The Clausius-Mossotti correction is intended to remove the contribution of the local electric field $\boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}$ to the restoring force that acts on the oscillating particle-i.e., that part of the local E-field that is considered to be the self-field. This is because the Lorentz oscillator model incorporates an overall restoring force by allowing for a spring, whose spring constant is α. However, for conduction electrons, no such spring has been assumed and, therefore, there is no chance of double-counting the restoring force. Consequently, the Drude model of the conduction electron (i.e., the Lorentz oscillator model in which ω_{0} is set to zero) has no need for correction.
c) Given $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \chi_{e}(\omega) \boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}$, the electric current density will be

$$
\boldsymbol{J}(\boldsymbol{r}, t)=\partial \boldsymbol{P} / \partial t=-\mathrm{i} \omega \varepsilon_{0} \chi_{e}(\omega) \boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{i} \omega t} \quad \rightarrow \quad \sigma(\omega)=-\mathrm{i} \omega \varepsilon_{0} \chi_{e}(\omega)
$$

In the Drude model, we have $\omega_{0}=0$. Consequently, $\chi_{e}(\omega)=-\omega_{p}^{2} /\left(\omega^{2}+\mathrm{i} \gamma \omega\right)$, which leads to

$$
\sigma(\omega)=\mathrm{i} \varepsilon_{0} \omega_{p}^{2} /(\omega+\mathrm{i} \gamma)=\left(N q^{2} / m\right) /(\gamma-\mathrm{i} \omega)
$$

One can readily verify that the units of $\sigma(\omega)$ are [ampere/(volt $\cdot \mathrm{m})$], i.e., the units of the current-density [ampere $/ \mathrm{m}^{2}$] divided by those of the electric field [volt/m]. The electrical conductivity $\sigma(\omega)$ is related to electric resistance, whose units are [volt/ampere] or ohm [Ω]. Thus, the units of $\sigma(\omega)$ may also be described as $[1 /(\Omega \cdot \mathrm{m})]$.

Problem 2) a) Considering that $c_{2}^{*}=c_{2}^{\prime}-\mathrm{i} c_{2}^{\prime \prime}$, the real part of c_{2} can be written as $1 / 2\left(c_{2}+c_{2}^{*}\right)$. Therefore, $\operatorname{Re}\left(c_{1}\right) \operatorname{Re}\left(c_{2}\right)=\operatorname{Re}\left[c_{1} \operatorname{Re}\left(c_{2}\right)\right]=1 / 2 \operatorname{Re}\left[c_{1}\left(c_{2}+c_{2}^{*}\right)\right]$.
b) $\quad \tilde{\boldsymbol{S}}=\operatorname{Re}(\boldsymbol{E} \times \boldsymbol{H})=\operatorname{Re}\left[\left(\boldsymbol{E}^{\prime}+\mathrm{i} \boldsymbol{E}^{\prime \prime}\right) \times\left(\boldsymbol{H}^{\prime}+\mathrm{i} \boldsymbol{H}^{\prime \prime}\right)\right]$

$$
\begin{equation*}
=\operatorname{Re}\left[\left(\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime}-\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime}\right)+\mathrm{i}\left(\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime \prime}+\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime}\right)\right]=\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime}-\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime} \tag{1}
\end{equation*}
$$

Clearly, $\tilde{\boldsymbol{S}}$ differs from $\boldsymbol{S}=\operatorname{Re}(\boldsymbol{E}) \times \operatorname{Re}(\boldsymbol{H})=\boldsymbol{E}^{\prime} \times \boldsymbol{H}^{\prime}$, because an additional term, $\boldsymbol{E}^{\prime \prime} \times \boldsymbol{H}^{\prime \prime}$, appears in the above expression of $\tilde{\boldsymbol{S}}$.
c) $\quad \boldsymbol{S}(\boldsymbol{r}, t)=\operatorname{Re}(\boldsymbol{E}) \times \operatorname{Re}(\boldsymbol{H})=\operatorname{Re}(\boldsymbol{E}) \times \frac{1}{2}\left(\boldsymbol{H}+\boldsymbol{H}^{*}\right)=1 / 2 \operatorname{Re}\left[\boldsymbol{E} \times\left(\boldsymbol{H}+\boldsymbol{H}^{*}\right)\right]$

$$
\begin{equation*}
=1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}+\boldsymbol{E} \times \boldsymbol{H}^{*}\right)=1 / 2 \operatorname{Re}(\boldsymbol{E} \times \boldsymbol{H})+1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right) . \tag{2}
\end{equation*}
$$

d) $\quad \boldsymbol{S}(\boldsymbol{r}, t)=1 / 2 \operatorname{Re}\left[\boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{i} \omega t} \times \boldsymbol{H}(\boldsymbol{r}) e^{-\mathrm{i} \omega t}\right]+1 / 2 \operatorname{Re}\left[\boldsymbol{E}(\boldsymbol{r}) e^{-\mathrm{j} \omega t} \times \boldsymbol{H}^{*}(\boldsymbol{r}) e^{+\mathrm{i} \omega t}\right]$

$$
=1 / 2 \operatorname{Re}[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}(\boldsymbol{r})(\cos 2 \omega t-\mathrm{i} \sin 2 \omega t)]+1 / 2 \operatorname{Re}\left[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}^{*}(\boldsymbol{r})\right]
$$

$$
=1 / 2 \operatorname{Re}[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}(\boldsymbol{r})] \cos (2 \omega t)+1 / 2 \operatorname{Im}[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}(\boldsymbol{r})] \sin (2 \omega t)
$$

$$
\begin{equation*}
+1 / 2 \operatorname{Re}\left[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}^{*}(\boldsymbol{r})\right] \tag{3}
\end{equation*}
$$

e) $\left\langle\cos \left(2 \omega_{0} t\right)\right\rangle=T^{-1} \int_{t_{0}}^{t_{0}+T} \cos \left(2 \omega_{0} t\right) \mathrm{d} t=\left.\left(2 \omega_{0} T\right)^{-1} \sin \left(2 \omega_{0} t\right)\right|_{t=t_{0}} ^{t_{0}+T}$

$$
\begin{equation*}
=\left(2 \omega_{0} T\right)^{-1}\left[\sin \left(2 \omega_{0} t_{0}+2 \pi\right)-\sin \left(2 \omega_{0} t_{0}\right)\right]=0 \tag{4}
\end{equation*}
$$

A similar calculation shows that $\left\langle\sin \left(2 \omega_{0} t\right)\right\rangle=0$. Substitution into Eq.(3) now yields

$$
\begin{equation*}
\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=1 / 2 \operatorname{Re}\left[\boldsymbol{E}(\boldsymbol{r}) \times \boldsymbol{H}^{*}(\boldsymbol{r})\right] . \tag{5}
\end{equation*}
$$

Problem 3) a) From the generalized Snell's law, we have $\omega^{(\mathrm{i})}=\omega^{(\mathrm{r})}=\omega^{(\mathrm{t})}=\omega, k_{x}^{(\mathrm{i})}=k_{x}^{(\mathrm{r})}=$ $k_{x}^{(\mathrm{t})}=k_{x}$ and $k_{y}^{(\mathrm{i})}=k_{y}^{(\mathrm{r})}=k_{y}^{(\mathrm{t})}=k_{y}$. Since the plane of incidence is chosen to be the $x z$-plane, we have $k_{y}=0$. Since the incident plane-wave is said to be homogeneous, the dispersion relation yields $\left|\boldsymbol{k}^{(\mathrm{i})}\right|=n_{0} \omega / c$ and, therefore, $k_{x}=\left(n_{0} \omega / c\right) \sin \theta$. Since the incident plane-wave is downward propagating, we have $k_{z}^{(\mathrm{i})}=-\left(n_{0} \omega / c\right) \cos \theta$. Similar arguments can be used to obtain the expressions of $k_{z}^{(\mathrm{r})}$ and $k_{z}^{(\mathrm{t})}$. Consequently,

$$
\begin{align*}
& \boldsymbol{k}^{(\mathrm{i})}=\left(n_{0} \omega / c\right)(\sin \theta \widehat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) \tag{1}\\
& \boldsymbol{k}^{(\mathrm{r})}=\left(n_{0} \omega / c\right)(\sin \theta \widehat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \tag{2}\\
& \boldsymbol{k}^{(\mathrm{t})}=\left(n_{0} \omega / c\right)\left(\sin \theta \widehat{\boldsymbol{x}}-\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta} \widehat{\mathbf{z}}\right) \tag{3}
\end{align*}
$$

The incident E-field is written as $\boldsymbol{E}^{(\mathrm{i})}(\boldsymbol{r}, t)=\left(E_{o x}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{i})} \widehat{\boldsymbol{z}}\right) \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right]$. Maxwell's $1^{\text {st }}$ equation now relates the z-component of the E-field to its x-component, as follows:

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{E}^{(\mathrm{i})}(\boldsymbol{r}, t)=0 \rightarrow \boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{E}_{0}^{(\mathrm{i})}=0 \rightarrow k_{x} E_{0 x}^{(\mathrm{i})}+k_{z}^{(\mathrm{i})} E_{0 z}^{(\mathrm{i})}=0 \rightarrow E_{0 z}^{(\mathrm{i})}=(\tan \theta) E_{0 x}^{(\mathrm{i})} . \tag{4}
\end{equation*}
$$

Similar expressions are found for $E_{0 z}^{(\mathrm{r})}$ and $E_{0 z}^{(\mathrm{t})}$; that is,

$$
\begin{align*}
& k_{x} E_{0 x}^{(\mathrm{r})}+k_{z}^{(\mathrm{r})} E_{0 z}^{(\mathrm{r})}=0 \quad \rightarrow \quad E_{0 z}^{(\mathrm{r})}=-(\tan \theta) E_{0 x}^{(\mathrm{r})}, \tag{5}\\
& k_{x} E_{0 x}^{(\mathrm{t})}+k_{z}^{(\mathrm{t})} E_{0 z}^{(\mathrm{t})}=0 \quad \rightarrow \quad E_{0 z}^{(\mathrm{t})}=\frac{(\sin \theta) E_{0 x}^{(\mathrm{t})}}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} . \tag{6}
\end{align*}
$$

For each plane-wave, the magnetic field $\boldsymbol{H}(\boldsymbol{r}, t)$ has only one component along the y-axis. This component can be found from Maxwell's $3^{\text {rd }}$ equation, as follows:

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \rightarrow\left(k_{x} \widehat{\boldsymbol{x}}+k_{z} \hat{\mathbf{z}}\right) \times\left(E_{0 x} \widehat{\boldsymbol{x}}+E_{0 z} \hat{\mathbf{z}}\right)=\mu_{0} \omega \boldsymbol{H}_{0} \rightarrow H_{0 y}=\left(\mu_{0} \omega\right)^{-1}\left(k_{z} E_{0 x}-k_{x} E_{0 z}\right) . \tag{7}
\end{equation*}
$$

The general expression for a p-polarized plane-wave's H-field is $\boldsymbol{H}(\boldsymbol{r}, t)=H_{00} \widehat{\boldsymbol{y}} e^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}$. The various $H_{0 y}$ are found from Eq.(7) with the aid of Eqs.(1), (2), (3), (5), (6) to be

$$
\begin{align*}
& H_{0 y}^{(\mathrm{i})}=\left(\mu_{0} \omega\right)^{-1}\left[-\left(n_{0} \omega / c\right) \cos \theta-\left(n_{0} \omega / c\right) \sin \theta \tan \theta\right] E_{0 x}^{(\mathrm{i})}=-\frac{n_{0} E_{0 x}^{(\mathrm{i})}}{z_{0} \cos \theta}, \tag{8}\\
& H_{0 y}^{(\mathrm{r})}=\left(\mu_{0} \omega\right)^{-1}\left[\left(n_{0} \omega / c\right) \cos \theta+\left(n_{0} \omega / c\right) \sin \theta \tan \theta\right] E_{0 x}^{(\mathrm{r})}=\frac{n_{0} E_{0 x}^{(\mathrm{r})}}{z_{0} \cos \theta}, \tag{9}\\
& H_{0 y}^{(\mathrm{t})}=\left(\mu_{0} \omega\right)^{-1}\left[-\left(n_{0} \omega / c\right) \sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}-\frac{\left(n_{0} \omega / c\right) \sin ^{2} \theta}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}}\right] E_{0 x}^{(\mathrm{t})}=-\frac{\left(n_{1}^{2} / n_{0}\right) E_{0 x}^{(\mathrm{t})}}{z_{0} \sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} . \tag{10}
\end{align*}
$$

b) At the interfacial $x y$-plane separating the incidence and transmittance media, the tangential component E_{x} of the E-field must be continuous, and so does the tangential component H_{y} of the H-field. Recalling that $\rho_{p}=E_{o x}^{(\mathrm{r})} / E_{0 x}^{(\mathrm{i})}$ and $\tau_{p}=E_{0 x}^{(\mathrm{t})} / E_{0 x}^{(\mathrm{i})}$, we write

Continuity of $\boldsymbol{E}_{\|}: \quad E_{0 x}^{(\mathrm{i})}+E_{0 x}^{(\mathrm{r})}=E_{0 x}^{(\mathrm{t})} \rightarrow 1+\rho_{p}=\tau_{p}$.
Continuity of $\boldsymbol{H}_{\|}: \quad H_{0 y}^{(\mathrm{i})}+H_{0 y}^{(\mathrm{r})}=H_{0 y}^{(\mathrm{t})} \rightarrow-\frac{n_{0} E_{0 x}^{(\mathrm{i})}}{Z_{0} \cos \theta}+\frac{n_{0} E_{0 x}^{(\mathrm{r})}}{Z_{0} \cos \theta}=-\frac{\left(n_{1}^{2} / n_{0}\right) E_{0 x}^{(t)}}{Z_{0} \sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}}$

$$
\begin{equation*}
\rightarrow \quad 1-\rho_{p}=\frac{\left(n_{1} / n_{0}\right)^{2} \cos \theta}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} \tau_{p} \tag{12}
\end{equation*}
$$

c) Considering that $n^{2}(\omega)=\mu(\omega) \varepsilon(\omega)=1+\chi_{e}(\omega)$, the material polarization within the transmittance medium should be written as

$$
\begin{equation*}
\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \chi_{e}(\omega) \boldsymbol{E}_{0}^{(\mathrm{t})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right]=\varepsilon_{0}\left[n_{1}^{2}(\omega)-1\right]\left(E_{0 x}^{(\mathrm{t})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{t})} \hat{\boldsymbol{z}}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)} e^{\mathrm{i} k_{z}^{(\mathrm{t})} z} \tag{13}
\end{equation*}
$$

The bound electric charge-density $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)=-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{P}_{0} \mathrm{e}^{\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)}$ vanishes everywhere within the transmittance medium, simply because $\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{E}_{0}^{(\mathrm{t})}=0$ (in accordance with Maxwell's $1^{\text {st }}$ equation). As for the bound electric current-density, we will have

$$
\begin{equation*}
\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=\partial \boldsymbol{P} / \partial t=-\mathrm{i} \omega \varepsilon_{0}\left(n_{1}^{2}-1\right)\left(E_{0 x}^{(\mathrm{t})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{t})} \hat{\boldsymbol{z}}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)} e^{\mathrm{i} k_{z}^{(\mathrm{t})} z} \tag{14}
\end{equation*}
$$

The above expression can be further streamlined by substituting for k_{x} and $k_{z}^{(\mathrm{t})}$ from Eq.(3), and for $E_{0 z}^{(\mathrm{t})}$ from Eq.(6).

Digression. If the imaginary part of n_{1} is taken to be positive, the imaginary part of $k_{z}^{(\mathrm{t})}$ will turn out to be negative. The integral of the bound current-density $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}$ over the infinite depth of the transmittance medium can then be evaluated as follows:

$$
\begin{align*}
\int_{z=-\infty}^{0} J_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t) \mathrm{d} z & =-\varepsilon_{0}\left(\omega / k_{z}^{(\mathrm{t})}\right)\left(n_{1}^{2}-1\right)\left(E_{0 x}^{(\mathrm{t})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{t})} \hat{\boldsymbol{z}}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)} e^{\left.\mathrm{i} k_{z}^{(\mathrm{t})} z\right|_{z=-\infty} ^{0}} \\
& =\frac{\varepsilon_{0} \omega\left(n_{1}^{2}-1\right) \tau_{p}}{\left(n_{0} \omega / c\right) \sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}}\left[\widehat{\boldsymbol{x}}+\frac{\sin \theta}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} \widehat{\boldsymbol{z}}\right] E_{0 x}^{(\mathrm{i})} e^{\mathrm{i}\left(k_{x} x-\omega t\right)} \tag{15}
\end{align*}
$$

Solving Eqs.(11) and (12) for ρ_{p} and τ_{p}, we arrive at the Fresnel reflection and transmission coefficients for p-polarized light, as follows:

$$
\begin{align*}
& \rho_{p}=\frac{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}-\left(n_{1} / n_{0}\right)^{2} \cos \theta}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}+\left(n_{1} / n_{0}\right)^{2} \cos \theta} \tag{16}\\
& \tau_{p}=\frac{2 \sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}+\left(n_{1} / n_{0}\right)^{2} \cos \theta} \tag{17}
\end{align*}
$$

In the limit when $n_{1} \rightarrow \infty$, we have $\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta} \rightarrow\left(n_{1} / n_{0}\right)$ and $\tau_{p} \rightarrow 2 n_{0} /\left(n_{1} \cos \theta\right)$. The integrated current density of Eq.(15) then approaches $2 n_{0} E_{0 x}^{(\mathrm{i})} \widehat{x} e^{\mathrm{i}\left(k_{x} x-\omega t\right)} /\left(Z_{0} \cos \theta\right)$. This can be interpreted as a surface-current-density $\boldsymbol{J}_{s}\left(x, y, z=0^{-}, t\right)$ residing within the skin-depth of a highly conductive (or absorptive) transmittance medium. In the same limit, $\rho_{p} \rightarrow-1$, resulting in the tangential H-field at the $x y$-plane immediately above the interface to approach $H_{0 y}^{(\mathrm{i})}+H_{0 y}^{(\mathrm{r})}=$ $-2 n_{0} E_{o x}^{(\mathrm{i})} /\left(Z_{0} \cos \theta\right)$. Immediately below the interfacial $x y$-plane at $z=0^{-}$, we have, in the limit,

$$
\begin{equation*}
H_{0 y}^{(\mathrm{t})}=-\frac{\left(n_{1}^{2} / n_{0} z_{0}\right) \tau_{p} E_{0 x}^{(\mathrm{i})}}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} \rightarrow-2 n_{0} E_{0 x}^{(\mathrm{i})} /\left(Z_{0} \cos \theta\right) . \tag{18}
\end{equation*}
$$

Consequently, the tangential H-field at the interface remains continuous even in the limit when $n_{1} \rightarrow \infty$. However, in this limit, the fields inside the transmittance medium decay exponentially rapidly toward zero, indicating that slightly below the skin-depth (which has now shrunk to nothingness) the H-field vanishes. The discontinuity of the tangential H -field across the skin-depth is thus seen to be equal in magnitude and perpendicular in direction to the aforementioned surface-current-density \boldsymbol{J}_{S}.

It is also worthwhile to examine the boundary condition associated with the perpendicular D-field across the interfacial plane. Given that $\boldsymbol{D}=\varepsilon_{0} \varepsilon(\omega) \boldsymbol{E}=\varepsilon_{0} n^{2} \boldsymbol{E}$, we will have

$$
\begin{gather*}
D_{\perp}\left(x, y, z=0^{+}, t\right)=\varepsilon_{0} n_{0}^{2}\left(E_{0 z}^{(\mathrm{i})}+E_{0 z}^{(\mathrm{r})}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)}=\varepsilon_{0} n_{0}^{2} \tan \theta\left(1-\rho_{p}\right) E_{0 x}^{(\mathrm{i})} e^{\mathrm{i}\left(k_{x} x-\omega t\right)}, \tag{19}\\
D_{\perp}\left(x, y, z=0^{-}, t\right)=\varepsilon_{0} n_{1}^{2} E_{0 z}^{(\mathrm{t})} e^{\mathrm{i}\left(k_{x} x-\omega t\right)}=\frac{\varepsilon_{0} n_{1}^{2}(\sin \theta) \tau_{p}}{\sqrt{\left(n_{1} / n_{0}\right)^{2}-\sin ^{2} \theta}} E_{0 x}^{(\mathrm{i})} e^{\mathrm{i}\left(k_{x} x-\omega t\right)} . \tag{20}
\end{gather*}
$$

Substituting for ρ_{p} from Eq.(16) into Eq.(19), and for τ_{p} from Eq.(17) into Eq.(20), it is now easy to confirm that indeed D_{\perp} remains continuous across the interfacial $x y$-plane.

The bound electric charge-density was shown in part (c) to vanish everywhere inside the transmittance medium. A similar argument can be made for the absence of $\rho_{\text {bound }}^{(\mathrm{e})}$ inside the incidence medium. However, the bound surface-charge-density is not zero at the interface between the two media. The material polarization of the incidence medium is given by

$$
\begin{equation*}
\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0}\left(n_{0}^{2}-1\right)\left[\left(E_{0 x}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{i})} \hat{\mathbf{z}}\right) e^{-\mathrm{i}\left(n_{0} \omega / c\right) \cos \theta z}+\left(E_{0 x}^{(\mathrm{r})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{r})} \hat{\mathbf{z}}\right) e^{\mathrm{i}\left(n_{0} \omega / c\right) \cos \theta z}\right] e^{\mathrm{i}\left(k_{x} x-\omega t\right)} \operatorname{step}(z) . \tag{21}
\end{equation*}
$$

The bound electric charge-density $\rho_{\mathrm{bound}}^{(\mathrm{e})}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)$ has an additional term arising from $\partial \operatorname{step}(z) / \partial z=\delta(z)$, which gives rise to a surface-charge-density at $z=0^{+}$, as follows:

$$
\begin{equation*}
\sigma_{s}\left(x, y, z=0^{+}, t\right)=-\varepsilon_{0}\left(n_{0}^{2}-1\right)\left(E_{0 z}^{(\mathrm{i})}+E_{0 z}^{(\mathrm{r})}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)} . \tag{22}
\end{equation*}
$$

There is also a similar surface charge-density on the surface of the transmittance medium at $z=0^{-}$, which is obtained from Eq.(13) as

$$
\begin{equation*}
\sigma_{s}\left(x, y, z=0^{-}, t\right)=\varepsilon_{0}\left(n_{1}^{2}-1\right) E_{0 z}^{(\mathrm{t})} e^{\mathrm{i}\left(k_{x} x-\omega t\right)} \tag{23}
\end{equation*}
$$

The total surface charge-density is the sum of Eqs.(22) and (23). The terms corresponding to the continuity of D_{\perp} add up to zero (see Eqs.(19) and (20)); what remains then is

$$
\begin{equation*}
\sigma_{s}\left(x, y, z=0^{+}, t\right)+\sigma_{s}\left(x, y, z=0^{-}, t\right)=\varepsilon_{0}\left(E_{0 z}^{(\mathrm{i})}+E_{0 z}^{(\mathrm{r})}-E_{0 z}^{(\mathrm{t})}\right) e^{\mathrm{i}\left(k_{x} x-\omega t\right)} . \tag{24}
\end{equation*}
$$

This equation reveals that the discontinuity of the perpendicular E-field at the interfacial $x y$ plane equals the (bound) surface-charge-density σ_{s} divided by ε_{0}, precisely as expected from the boundary condition associated with Maxwell's $1^{\text {st }}$ equation.

