Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Consider a time-independent polarization distribution centered at the origin of the xyz coordinate system, as follows:

$$
\boldsymbol{P}(\boldsymbol{r})=\frac{p_{0} \hat{z}}{\Delta^{3}} \operatorname{Rect}\left(\frac{x}{\Delta}\right) \operatorname{Rect}\left(\frac{y}{\Delta}\right) \operatorname{Tri}\left(\frac{z}{\Delta}\right) .
$$

The dipole moment $p_{0} \hat{\mathbf{z}}$ has units of [coulomb • meter], and the width parameter Δ is in meters.

2 pts
a) Find the bound electric charge-density $\rho_{\text {bound }}^{(e)}(\boldsymbol{r})$ corresponding to the polarization $\boldsymbol{P}(\boldsymbol{r})$.
b) What is the total electric charge in the region above the $x y$-plane (i.e., in the region $z>0$)?
c) What is the total electric charge in the region below the $x y$-plane (i.e., in the region $z<0$)?
d) What is the separation distance between the center of charge above and the center of charge below the $x y$-plane?
e) Considering the results obtained in (b), (c), and (d), find the electric dipole moment of the charge distribution in the limit when Δ is sufficiently small.
f) In the limit when $\Delta \rightarrow 0$, the polarization $\boldsymbol{P}(\boldsymbol{r})$ approaches the density of an electric pointdipole located at the origin of the coordinates. Use the Dirac delta-function notation to express the polarization distribution in the limit of $\Delta \rightarrow 0$.
Hint: $\quad \boldsymbol{\nabla} \cdot \boldsymbol{V}(\boldsymbol{r})=\frac{\partial}{\partial x} V_{x}(r)+\frac{\partial}{\partial y} V_{y}(r)+\frac{\partial}{\partial z} V_{z}(r)$.
2 pts Problem 2) a) Write the complete set of Maxwell's partial differential equations. Substitute for \boldsymbol{D} and \boldsymbol{B} in terms of the \boldsymbol{E} and \boldsymbol{H} fields, so that the equations retain only the \boldsymbol{E} and \boldsymbol{H} fields - in addition, of course, to the relevant sources $\rho_{\text {free }}(\boldsymbol{r}, t), \boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t), \boldsymbol{P}(\boldsymbol{r}, t)$, and $\boldsymbol{M}(\boldsymbol{r}, t)$.
b) Transform the equations obtained in (a) to the Fourier domain. The resulting equations must contain only the Fourier-transformed fields $\boldsymbol{E}(\boldsymbol{k}, \omega)$ and $\boldsymbol{H}(\boldsymbol{k}, \omega)$ as well as the relevant (Fourier transformed) source fields.
c) Solve the equations obtained in (b) to find a complete expression for $\boldsymbol{E}(\boldsymbol{k}, \omega)$ in terms of the Fourier transformed source fields.
d) Use the solution obtained for $\boldsymbol{E}(\boldsymbol{k}, \omega)$ in conjunction with Maxwell's $3^{\text {rd }}$ equation to arrive at an expression for $\boldsymbol{H}(\boldsymbol{k}, \omega)$.
e) Show that $\boldsymbol{E}(\boldsymbol{k}, \omega)$ obtained in (c) satisfies Maxwell's $1^{\text {st }}$ equation.
f) Show that $\boldsymbol{H}(\boldsymbol{k}, \omega)$ obtained in (d) satisfies Maxwell's $4^{\text {th }}$ equation.

Hint: The vector identity $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$ will be helpful.
Problem 3) A uniformly-magnetized solid sphere of radius R sits at the origin of coordinates with magnetization $M_{0} \hat{\mathbf{z}}$ along the z-axis; that is, $\boldsymbol{M}(\boldsymbol{r})=M_{0} \hat{\mathbf{z}}$ sphere (r / R).

3 pts
a) Find the 3-dimensional (3D) Fourier transform of $\boldsymbol{M}(\boldsymbol{r})$, namely, $\boldsymbol{M}(\boldsymbol{k})=\iiint_{-\infty}^{\infty} \boldsymbol{M}(\boldsymbol{r}) e^{-\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}} \mathrm{d} \boldsymbol{r}$.
b) Considering that the bound electric current-density is given by $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r})=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r})$, find the current-density's 3D Fourier transform $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{k})$.
c) The bound electric charge-density $\rho_{\text {bound }}^{(e)}(\boldsymbol{r}, t)$ associated with any magnetization distribution $\boldsymbol{M}(\boldsymbol{r}, t)$ is known to be zero. Thus, the charge-current continuity equation for our magnetized sphere becomes $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r})=0$. Write the Fourier domain version of this continuity equation, then confirm that $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{k})$ obtained in (b) does in fact satisfy the equation.
d) Write down the Fourier domain expressions for the scalar and vector potentials in 3D k-sapce, namely, $\psi(\boldsymbol{k})$ and $\boldsymbol{A}(\boldsymbol{k})$, in the Lorenz gauge. (Note: You are not being asked here to derive these expressions, nor are you being asked to carry out an inverse Fourier transformation to find the potentials in the spacetime domain.)

Hint: $\int_{r=0}^{R} r \sin (k r) \mathrm{d} r=[\sin (k R)-k R \cos (k R)] / k^{2}$.
Also, the vector identity $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})$ could be helpful.

