Opti 501 2" Midterm Solutions (10/31/2023) Time: 75 minutes

bound

Problem 1) a) p(e) r)=-V-P(r) = —%Pz(r) = —(p,/A3)Rect G) Rect (%)%Tri (i)

The derivative with respect to z of Tri(z/A) is zero everywhere except in the interval
—A< z < 0, where it equals 1/A, and also in the interval 0 < z < A, where it equals —1/A.

b) In the region above the xy-plane (i.e., z > 0), the bound electric charge-density within a
A X A X A cube equals p,/A*. The total charge within this cube, therefore, equals p,/A.

c) In the region below the xy-plane (i.e., z < 0), the bound electric charge-density within a
A X A X A cube equals —p,/A*. The total charge within this cube, therefore, equals —p, /A.

d) The A X A X A cubes above and below the xy-plane are centered at z = +%A, yielding a
separation distance of A between the centers of the positive and negative charged cubes.

¢) For sufficiently small A, the charges p,/A above and —p,/A below the xy-plane are separated
by a distance A along the z-axis. The corresponding electric dipole moment thus equals p,Z.

f) In the limit when A— 0, we have A"1Rect(x/A) - §(x) and A~*Rect(y/A) = §5(y). Also
A™1Tri(z/A) — 6(z). Consequently,

P(r) = 2 Rect (%) Rect (%) Tri (z) > p,286(X)8(y)8(2).

Problem 2) a) Upon substituting D(r, t) = g,E(r,t) + P(r,t) and B(r,t) = u,H(r,t) + M(r,t)
in Maxwell’s partial differential equations, we arrive at

V-D(1,t) = pee(m,t) = &V E@,t) = ppec(,t) —V-P(r,t) = p. (1, 0), (1)

total

VXHT,t) = Jpee T, t) + 0, D, t) > VX H = (Jyeo + 0.P) + 0,6, E = J., + £,0.E, (2)

VXE(@,t)=—0B(r,t)/ot —» VXE=—0M—0uH=—-J"  —u,0H, (3)

V-B(r,t)=0 - V-uH=-V-M - uV-H@t)=pP (rt). 4)
b) When Fourier transformed, the above equations become

&ik - E(k, w) = pgroo(k, w) — ik - P(k, w), (5)

ik X H(k,w) = Jgee(k, w) —iwP(k,w) — iwe,E(k, w), (6)

}4( x E(k, w) = ﬁM(k, w) + /ié),uoH(k, w), (7)

uyi - H(k, ) = —jk - Mk, w). )

c¢) Cross-multiplying Eq.(7) on the left into k, then substituting from Eqgs.(5) and (6), we find
k x [k X E(k, w)] = wk X M(k, w) + u,wk x H(k, w)

- [k-E(k,w)]lk — (k-k)E(k,w) = wk X M(k, w) — ity [Jree (K, ) — iwP(k, w) — iwe, E(k, w)]
- [_igo_lpfree(kJ (1)) - go_lk ' P(kr w)]k - kZE(k: (1)) = wk X M(k, (‘)) - i.uo(u]free(kJ (1))
—p,w?P(k, w) — uyc,w?E(k, )



inowJeree (k) — igg  [peree (kw)k + pow?P(k,w)—e5 [k - P(k,w)lk — wk x M(k,w) 9
kZ - (w/c)? )

- E(k,w) =
d) The H-field is now found from Eq.(7) in conjunction with Eq.(9), as follows:
H(k, ) = (uow) 1k X E(k, w) — u; *M(k, w). (10)
e) Upon Fourier transforming the charge-current continuity equation, namely,
V- Jiora (T, £) + 0pigl, (1, £)/0t = 0, (11

and recalling that p{® .(r,t) = —V-P(r,t) and J© . (r,t) = OP(r,t)/dt + u;'V X M(r,t), we
arrive at

e J (k) = Hop$y (k) = 0
> ke 19,0 ) — 0Pk, w) + 15 ik X M(k, )] = 0[pE,(k ) — ik - Pk, w)]. (12)

When Fourier transformed, Maxwell’s first equation, V- D(7r,t) = pg..(1,t), becomes
ie,k - E(k, w) = ppee(k, w) — ik - P(k, ). Substitution from Egs.(9) and (12) now yields

—Uoeowk  Jiree (K,w)+[pfree (Kw)kk +ipgegw?k - P(kw)—i[k - P(k,w)k-k — igqwk - [kxM (k,w)]

ie,k- E(k,w) = (/o)
_ —togowk - [Jeree(kw) —iwP(k,w) + ug tik x M(k,w)] + [pfree (k) — ik - P(k,w)]k?
o k2 — (w/c)?

_ —(@/)?pE (kw) — ik P(k,w)] + [pfree (k) — ik - P(k,w)]k>
o k2 — (w/c)?

[k? = (@/€)*] [Pfree(kw) — ik - P(k,w)] .
= e = = ek, @) — ik Pk, ). (13)

f) Maxwell’s 4™ equation, V - B(r, t) = 0, leads to k- H(k, w) = —k - M(k, w) upon Fourier
transformation. To confirm the satisfaction of this equation, we dot-multiply Eq.(10) into y,k,
thus arriving at

uk-Hk,w) =w k- [k X E(k,w)] —k-M(k,w) <—|usea-(b><c) =c-(a><b)|
0
= W (kxH) - E(k,w) — k- M(k, w) = —k - M(k, ). (14)

Problem 3) The Fourier transform of M(r) is computed by 3-dimensional integration in the xyz
space, as follows:

FM()} = [ff" M,2 sphere(r/R)e~* dr

_ r
=M,2 er=0 f:zo 2mr? sin g e KT COS @ dpdr «s .
r? A \ y
\Y

R
A —3 T
= ZﬂMOZf ——eikreosg|" gy
ikr =0
r=0
_(2mM\ A (R ikr _ _—ikr /
= (—) Z fr=07"(e e ) dr

ik x

AZ

= (4”:10) Z er:O rsin(kr) dr = 4”:’" Z [— £ cos(kr)

R
r=

. 1— %er:o cos(kr) dr]

| integration by parts |




= (47:”0) [sin(kR) — kR cos(kR)]z.

b) The Fourier transform of the bound electric current-density is readily found to be

JEma(B) = FL a@} = Flug v x M(1)} = pytik x M(k) =

bound bound

i4mM [sin(kR) — kR cos(kR) A~
p [ 3 ] kxz.
¢) The continuity equation V + J'© (1) = 0 becomes ik - J©. (k) = 0 in the Fourier domain.

bound bound
Considering that our J (k) is orthogonal to the k-vector, one can immediately see that its

dot-product into k must vanish. Alternatively, the vector identity k- (kxZ) =Z- (kX k) =0
can be invoked to arrive at the same conclusion. Needless to say, since the divergence of the curl

of any vector field is always zero, the divergence of J (1) in the xyz-space, being

proportional to the curl of M(r), should have been expected to vanish all along.

d) In this magnetostatic problem, where w = 0, we have

l/)(k) — pl(aeo)und(k) —

gok?

0,

A(k) _Ho ]b(;(uznd( ) — i4nM, [sm(kR) k]ZR cos(kR) A3 %= k/k

Digression. The vector potential in xyz-space is the inverse Fourier transform of A(k); that is,

A(r) = T_l{A(k)} — 1(42711\)/130,\ fff A[sm(kR) chos(kR)] ik T ik ‘—I X% = xR |

27T2 Kk

_ 1M0 5 f f [sin(kR) — kR cos(kR)] eikr 0S99 12 sin ® d(pdk

| 7 cos ¢ is the pl‘O_]eCthl’l of K onto # |

=-Mpxq f |[FROR Rl 7 sing cos g €K7 05 dgdk
_ _ 11\/1_02 % rf [sm(kR) — kR cos(kR) 2i[sin(kr) — kr cos(kr)] dk
k2 (kr)?

kr cos(kr)] dk <—| see Chapter 3, Problem 22 |

_ Mo o o j [sin(kR) — kR cos(kR)] [sin(kr) —
k=0

2 k4
) _(mR3/6, r>R;
="—ZXT <{2X 7 =sinf @ in spherical coordinates |
nr nr3/6, r <R.
Consequently,
¥sM,(R3/r?)sin 0 @, r > R;
A(r,6,9) = { ’

M,r sin 6 @, r <R.

The E and B fields may now be obtained from the scalar and vector potentials, as follows:

E(r)=-Vy(r)—-0d,A(r) =0.



Br) =V x A(r) = —2

. L 10 ~
(sm 0 A(p)r —- (rd,)0

rsin@%
{1/3M0R3(2 cosO 7+ sin6 ) /r3, r > R;
2M,(cos 6+ —sin 8 8) = %M, 2, r <R.

The B-field is seen to be uniform within the spherical magnet, whereas, outside the sphere, it
has the same profile as that of a point dipole m = (4mR3/3)M,Z located at the sphere’s center.




