Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A plane electromagnetic (EM) wave propagates in free space, where all EM sources are absent; that is, $\rho_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{P}(\boldsymbol{r}, t)=0$, and $\boldsymbol{M}(\boldsymbol{r}, t)=0$. The \boldsymbol{E} and \boldsymbol{H} fields of the plane-wave are specified (in complex notation) as follows:

$$
\begin{array}{ll}
\boldsymbol{E}(\boldsymbol{r}, t)=\left(E_{0}^{\prime} \widehat{\boldsymbol{x}}+\mathrm{i} E_{0}^{\prime \prime} \widehat{\boldsymbol{y}}\right) e^{\mathrm{i}[(\omega / c) z-\omega t]}, & \leftarrow E_{0}^{\prime}, E_{0}^{\prime \prime} \text { and } \omega \text { are real } \\
\boldsymbol{H}(\boldsymbol{r}, t)=\left(\mathrm{i} H_{0}^{\prime \prime} \widehat{\boldsymbol{x}}+H_{0}^{\prime} \widehat{\boldsymbol{y}}\right) e^{\mathrm{i}[(\omega / c) z-\omega t]} . * H_{0}^{\prime}, H_{0}^{\prime \prime} \text { and } \omega \text { are real }
\end{array}
$$

The plane-wave is linearly-polarized if either $E_{0}^{\prime}=0$ or $E_{0}^{\prime \prime}=0$; it is circularly-polarized if $E_{0}^{\prime \prime}=E_{0}^{\prime}$ or $E_{0}^{\prime \prime}=-E_{0}^{\prime}$; otherwise, the plane-wave is said to be elliptically-polarized.

2 pts a) Evaluate the divergence and curl of the plane-wave's \boldsymbol{E} and \boldsymbol{H} fields.
b) Verify that $\boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t)=0$ and $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0$
c) Evaluate $\partial \boldsymbol{D}(\boldsymbol{r}, t) / \partial t$ and $\partial \boldsymbol{B}(\boldsymbol{r}, t) / \partial t$.
d) Invoke Maxwell's $2^{\text {nd }}$ equation to relate the components H_{0}^{\prime} and $H_{0}^{\prime \prime}$ of the H-field to the components E_{0}^{\prime} and $E_{0}^{\prime \prime}$ of the E-field. (Use the identities $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ and $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ to simplify your results.)
2 pts e) Repeat part (d) using Maxwell's $3^{\text {rd }}$ equation. Verify that ($H_{0}^{\prime}, H_{0}^{\prime \prime}$) expressed in terms of ($E_{0}^{\prime}, E_{0}^{\prime \prime}$) agrees with the result obtained in part (d).
f) Derive an expression for the plane-wave's Poynting vector. Show that, for a linearly-polarized plane-wave, the Poynting vector has a constant part and a part that varies with the spacetime coordinates (z, t), whereas for a circularly-polarized wave the Poynting vector is constant.

Hint: In Cartesian coordinates,

$$
\boldsymbol{\nabla} \cdot \boldsymbol{V}(\boldsymbol{r}, t)=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z} \text { and } \boldsymbol{\nabla} \times \boldsymbol{V}(\boldsymbol{r}, t)=\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right) \widehat{\boldsymbol{x}}+\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \widehat{\boldsymbol{y}}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \hat{\boldsymbol{z}} .
$$

The trigonometric identities $\sin ^{2} x=1 / 2[1-\cos (2 x)]$ and $\cos ^{2} x=1 / 2[1+\cos (2 x)]$ can be helpful.
Problem 2) A pair of counter-propagating plane-waves trapped between two parallel, perfectly electrically conducting, flat mirrors is depicted in the figure (below). The plane-waves are monochromatic, have the same frequency ω, and are linearly-polarized along the x-axis. The realvalued \boldsymbol{E} and \boldsymbol{H} fields in the free space region between the mirrors are given by

$$
\begin{gather*}
\boldsymbol{E}(\boldsymbol{r}, t)=E_{0} \widehat{\boldsymbol{x}} \cos [(\omega / c) z-\omega t]-E_{0} \widehat{\boldsymbol{x}} \cos [(\omega / c) z+\omega t] \tag{0}\\
\boldsymbol{H}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \widehat{\boldsymbol{y}} \cos [(\omega / c) z-\omega t]+\left(E_{0} / Z_{0}\right) \widehat{\boldsymbol{y}} \cos [(\omega / c) z+\omega t]
\end{gather*}
$$

The wavelength λ, the angular frequency ω, the oscillation period T, and the frequency f of the plane-waves are related to each other (and to the speed c of light in vacuum) as follows:

$$
\lambda=c T=c / f=2 \pi c / \omega
$$

The resonance condition for the cavity is that the distance L separating the (parallel) mirrors must be an integer-multiple of a half wavelength; that is,

$$
L=n \lambda / 2=n \pi c / \omega,
$$

where n is an arbitrary positive integer. The following trigonometric identities may be used to simplify the expressions of the \boldsymbol{E} and \boldsymbol{H} fields within the cavity:

$$
\begin{gathered}
\cos a+\cos b=2 \cos [(a+b) / 2] \cos [(a-b) / 2] \\
\cos a-\cos b=-2 \sin [(a+b) / 2] \sin [(a-b) / 2]
\end{gathered}
$$

3 pts a) Verify that the four Maxwell boundary conditions are satisfied at each mirror's inner surface. What are the surface current-densities $\boldsymbol{J}_{S}(\boldsymbol{r}, t)$ at the inner surfaces of the mirrors?
3 pts b) Use the Lorentz force law to determine the radiation pressure (i.e., force per unit area) exerted by the electromagnetic (EM) field on each mirror.

3 pts

3 pts
c) Write an expression for the energy-density of the EM field in the region between the mirrors. Integrate the energy-density (from $z=0$ to L) to find the total energy stored within the cavity.
d) Suppose the mirror on the right-hand side of the cavity moves forward (albeit slowly) by a short distance ΔL along the z-axis. Equate the work done by the radiation force on the mirror with the reduction in the stored energy of the EM field to reveal that $\Delta E_{0} / E_{0}=-\Delta L / L$. (A similar conclusion, of course, can be reached for the magnetic field amplitude.)

Hint: $\int_{0}^{n \pi} \sin ^{2} \zeta \mathrm{~d} \zeta=\int_{0}^{n \pi} \cos ^{2} \zeta \mathrm{~d} \zeta=n \pi / 2$.

