Opti 501 1** Midterm Solutions (9/28/2023) Time: 75 minutes
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Problem 1) a) V- E(r,t) = +%+"’ai;=o+o+o=o.

= (w/c)(E!R + iE.y)ell@/z - wt]

Similarly,
_ _ OHy , OHy | OH; _ _
V H(rlt)_ dx + ay + 0z _O+O+0_0’
_ (%2 _Oy\ g (Vx_g) g (Oy  OHx)
VXH(T,t)—(ay az)x+(az ax)y+(ax ay)z

= {[0 — H)(iw/c)]X + [iH, (iw/c) — 0]y + [0 — 0]z}eil(@w/)z ~wt]
= —(w/c)(iH!X + H!'y)eillw/c)z —wt]
b) V-D(r,t)=V-(¢,E+P)=¢,V-E=0.
V-B(r,t)=V-(uH+M) =pV-H=0.
¢) aD(r,t)/0t = ,0E(r,t) /0t = —iwe,(E\% + iE!'y)ellw/Oz - wt]
0B(r,t)/0t = p, OH(r, 1) /0t = —iwp,(iHy % + H,p)el(@/A7 = wt]
d) VXH(rt) =Jueo(r,t) + 0D(r,t)/0t - —(w/c)(iH, X+ H)y) = —iwe,(E;X + iE)Y)
= & (HeX + H'Y) = &,(IE;X — Ejy) — Hg=Ej/Z, and Hy =—E//Z,
- H(r,t) = (Hy® + Hip)elllw/dz =t = 751 (—jE % + Egy)ell@/az — ot
e) VXE(rt)=—-0B(r,t)/ot - (w/c)(Efx +iE)y) = iou,(iH) X + H,y)
= Vo€ (EgX +1EY) = po(—HyX +1Hy) - H,=E;/Z, and Hy = —Ej/Z,.
- H(r, t) = (iHé’f + Héy)ei[(w/c)z—wt] — Zo_l(—iEé'f + Eé?)ei[(w/c)z_wt].
This expression for the H-field is seen to be in complete agreement with that obtained in part (d).
f) Re[E(r,t)] = Re{(Egic\ +iE)y){cos[(w/c)z — wt] + isin[(w/c)z — wt]}}
= E,xcos[(w/c)z — wt] — E;y sin[(w/c)z — wt].
Re[H(r,t)] = Re{Zo_l(—iEg’k\ + E;y){cos[(w/c)z — wt] +isin[(w/c)z — wt]}}
= Z;YE!Zsin[(w/c)z — wt] + Z;E}y cos[(w/c)z — wt].
S(r,t) = Re[E(r,t)] X Re[H(r,t)] = {E;X cos[(w/c)z — wt] — E;y sin[(w/c)z — wt]}
X Z;YE!Zsin[(w/c)z — wt] + E}y cos[(w/c)z — wt]}



= Z;YE!? cos?[(w/c)z — wt] + E}? sin?[(w/c)z — wt]}2
= %7 H(E? + E'?) + (B — E') cos[2(w/¢)z — 2wt]}2.

For linearly-polarized light, either E, = 0 or E, = 0. The Poynting vector will then have a
constant (time-averaged) value (S(r,t)) = (E}?/2Z,)Z or (E}?/2Z,)Z, in addition to a term that
varies with (z,t) as cos[2(w/c)z — 2wt]. The energy flow rate is always in the direction of Z,
although it oscillates (as a function of time t at any given z, or as a function of z at any given
time) between zero and a maximum value, the maximum being twice the average flow rate.

For circularly-polarized light, E) = +E; and, therefore, S(r,t) = (E}?/Z,)Z, which is a
constant along the direction of Z, independent of 7 and t.

Problem 2) a) Using trigonometric identities, we simplify the expressions of the E and H fields,
as follows:

E(r,t) = 2E,xsin(wz/c) sin(wt),
H(r,t) = 2(E,/Z,)y cos(wz/c) cos(wt).

At z = 0, we have sin(wz/c) = 0 and, therefore, E(x,y,z = 0,t) = 0. Similarly, at z = L,
we have sin(wz/c) = sin(wL/c) = sin(nm) = 0; consequently, E(x,y,z = L,t) = 0. Thus, the
overall E-field is seen to vanish at both z = 0 and z = L. This is in agreement with the Maxwell
boundary condition that requires the continuity of the tangential E-field at the mirror’s surface,
where the E-field immediately inside the conductor is zero. As for the magnetic field, we find

H(x,y,z=0,t) = 2(E,/Z,)y cos(wt).

H(x,y,z=1L,t) = 2(E,/Z,)y cos(wL/c) cos(wt) = 2(E,/Z,)y cos(nm) cos(wt)
= 2(=D"(E,/Z,)y cos(wt).

Considering that the H-field inside the conductors is zero, Maxwell’s boundary condition
requires the existence of a surface current-density J(x,y,z = 0,t) = —2(E,/Z,)X cos(wt) at
the front facet of the mirror on the left-hand side. Similarly, the surface current-density at the
inner surface of the mirror on the right must be J;(x,y,z = L,t) = 2(—1)"(E,/Z,)X cos(wt).

The perpendicular components of D = g E and B = y,H are zero everywhere inside the
cavity and also within the conducting mirrors. The continuity of D, at the inner surface of each
mirror shows that no surface charge-density exists at the surface. Finally, the continuity of B
confirms the satisfaction of the relevant boundary condition at each mirror’s inner surface.

b) Recalling that the effective H-field acting on the surface currents is the average of the H-
fields immediately in front and behind each sheet of surface current, the Lorentz force (per unit

area) on the mirrors is given by -B = u,H
v
F(x,y,z=0,t) =%J,(x,y,z=0,t) X B(x,y,z=0,t)
= —(E,/Z,)x cos(wt) X 2u,(E,/Z,)y cos(wt) = —2&,E? cos?(wt) 2.

F(x,y,z=L,t) = %J(x,y,z=L,t) X B(x,y,z = L, t) = 26,E? cos?(wt) 2.

Given that (cos?(wt)) = ¥, the time-averaged Lorentz force (per unit area) acting on each
mirror’s surface is found to be £,EZ2, in a direction that tends to push the mirrors apart.



c) E(r,t) = Ye,E-E+Y%u,H-H
= 2¢,EZ sin?(wz/c) sin?(wt) + 2u,(E,/Z,)? cos?(wz/c) cos?(wt)
= 2¢,E2[sin?(wz/c) sin?(wt) + cos?(wz/c) cos?(wt)].

Integrating the above energy-density from z = 0 to z = L now yields the stored EM energy
(per unit cross-sectional area) within the cavity. Note that

fZLzo sin?(wz/c)dz = (¢c/w) f;:)z/c sin?(¢)d{ = (c/w) f;’; sin?({) d{ = nnc/(2w) = YL.

Similarly, sz=0 cos?(wz/c) dz = ¥%L. We thus find

Energy per unit area = fZLzo E(r,t)dz = 2¢,E?[%L sin?(wt) + %L cos?(wt)] = &,E2L.
d) The mechanical work done by the radiation on the mirror located at z = L when the mirror
moves to z = L + AL equals the radiation force times the displacement; that is,

Work done per unit area of the mirror = £,EZAL.

In the process, the field amplitudes change to E, + AE, and H, + AH, (with AH, = AE,/Z,),
so that the overall change in the energy stored within the cavity (per unit cross-sectional area) is

The following identity is being used here:
dlf2()g(l/dx = 2f ) f' () g(x) + f2(x)g' (x).

This change in energy must be equal in magnitude and opposite in sign to the work done on
the system by the radiation pressure; that is,

&,(2E,AE,)L + €,E?AL = —¢,E2AL -  AE,/E, = —AL/L.

The fractional decline in the E-field amplitude (and, similarly, in the H-field amplitude) is
seen to equal the fractional increase in the length L of the cavity. The same is true of the stored
energy; that is,

A(Energy) = A(g,EZL) = £,(2E,AE,)L + ,EZAL. <]

A(Energy)  &EZAL AL
Energy ~  &E2L L

Digression: If we assume that the number n of the nodes inside the cavity (i.e., the number of
zero-crossings of the E and H fields) remain unchanged during the expansion, we will have

L=nA/2 - AA/A = AL/L.

Given that 1 = 2mc/w, we now have Al = —2ncAw/w? = —A(Aw/w) and, therefore,
AA/A = —Aw/w. Thus, the fractional change in the stored energy equals the fractional change in
the frequency of the EM radiation inside the cavity. This is consistent with the quantum-optical
picture of photons residing in the cavity, each having an energy of Aiw. The number of photons
during the (slow) expansion of the cavity does not change, but their frequency declines, resulting
in a reduced overall energy in proportion to the change in frequency (i.e., Doppler shift).




