Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Recalling that E(r,t) = E'(r,t) + iE''(r,t) and H(r,t) = H'(r,t) + iH''(r,t), compare the following expressions that have been proposed for the Poynting vector:

- (i) $S(r,t) = \text{Real}\{E(r,t) \times H(r,t)\};$ (ii) $S(r,t) = \text{Real}\{E(r,t)\} \times \text{Real}\{H(r,t)\}.$
- 3 pts a) Which expression represents the correct form of the Poynting vector? What are the *SI* units (or dimensions) of *E*, *H*, and *S* in each of the above expressions? (*SI* is also called *MKSA*.)
- 3 pts b) For each expression in (i) and (ii), write S(r, t) in terms of the real and imaginary parts of the *E* and *H* fields. Identify the extraneous term(s) that make one of the expressions incorrect.
- 3 pts c) In the case of single-frequency (i.e., monochromatic) electromagnetic fields, one often writes the fields as $E(r,t) = E(r)e^{-i\omega t}$ and $H(r,t) = H(r)e^{-i\omega t}$, where E(r) = E'(r) + iE''(r)and H(r) = H'(r) + iH''(r). Write the correct expression of the Poynting vector for this case of a monochromatic field in terms of E'(r), E''(r), H'(r), H''(r), $\cos(\omega t)$, and $\sin(\omega t)$.
- 2 pts d) Use $S(\mathbf{r}, t)$ derived in part (c) to compute the time-averaged (or period-averaged) Poynting vector, namely, $\langle S(\mathbf{r}, t) \rangle = T^{-1} \int_{t_0}^{t_0+T} S(\mathbf{r}, t) dt$. Here t_0 is an arbitrary point in time, while $T = 2\pi/\omega$ is the period of oscillations.

2 pts e) For the time-averaged S(r, t) derived in part (d), show that $(S(r, t)) = \frac{1}{2} \text{Real} \{E(r) \times H^*(r)\}$.

Hint: $\cos^2(\omega t) = \frac{1}{2}[1 + \cos(2\omega t)], \ \sin^2(\omega t) = \frac{1}{2}[1 - \cos(2\omega t)], \ \sin(\omega t)\cos(\omega t) = \frac{1}{2}\sin(2\omega t).$

Problem 2) A monochromatic plane-wave of frequency ω arrives at normal incidence at the interface between free space and a metallic medium whose permeability and permittivity are

specified as $\mu_0\mu(\omega)$ and $\varepsilon_0\varepsilon(\omega)$. At optical frequencies, one can set $\mu(\omega) = 1$ and proceed to take the refractive index of the metallic medium as $n(\omega) = \sqrt{\varepsilon(\omega)}$. Assume that $\varepsilon(\omega)$ can be anywhere in the upper-half of the complex plane and that, therefore, the refractive index can be written as $n(\omega) = n'(\omega) + in''(\omega)$ with $n''(\omega) > 0$. The incident *E*-field is aligned with the *x*-axis, and the Fresnel reflection and transmission coefficients at the metallic surface are $\rho = (1 - n)/(1 + n)$ and $\tau = 2/(1 + n)$.

- 4 pts a) Write expressions for the *E* and *H* fields of incident, reflected, and transmitted plane-waves.
- 4 pts b) Inside the metallic medium, the bound electric current-density is $J_{\text{bound}}^{(e)}(\mathbf{r},t) = \partial \mathbf{P}/\partial t = -i\omega\varepsilon_0\chi_e(\omega)\mathbf{E}^{(t)}(\mathbf{r},t)$, where the material's electric susceptibility is $\chi_e(\omega) = \varepsilon(\omega) 1 = n^2(\omega) 1$. Find the bound electrical current throughout the entire depth of the metallic host by integrating $J_{\text{bound}}^{(e)}(\mathbf{r},t)$ over the negative-half of the z-axis, i.e., from $z = -\infty$ to 0.
- 4 pts c) In the limit of a perfect electrical conductor, when $n'' \to \infty$, show that the integrated current obtained in part (b) is equal in magnitude (and \perp in direction) to the *H*-field immediately

above the metallic surface. This confirms that the discontinuity of the *H*-field at the interface between free space and a perfect conductor satisfies Maxwell's second boundary condition.

Problem 3) A homogeneous plane-wave of frequency ω propagates along the x-axis within a semi-infinite, linear, isotropic, homogeneous, transparent medium whose real-valued and positive permeability and permittivity are given by

 $\mu_0\mu_a(\omega)$ and $\varepsilon_0\varepsilon_a(\omega)$. The (real-valued and positive) refractive index of the medium is, therefore, given by $n_a(\omega) = \sqrt{\mu_a(\omega)\varepsilon_a(\omega)}$.

- 1 pt a) Use the dispersion relation $\mathbf{k}^{(i)} \cdot \mathbf{k}^{(i)} = (\omega/c)^2 \mu_a \varepsilon_a$ to confirm that $\mathbf{k}^{(i)} = (n_a \omega/c) \hat{\mathbf{x}}$.
- 2 pts b) Let $\boldsymbol{E}_{ox}^{(i)}(\boldsymbol{r},t) = \boldsymbol{E}_{o}^{(i)}e^{i(\boldsymbol{k}^{(i)}\cdot\boldsymbol{r}-\omega t)}$, where $\boldsymbol{E}_{o}^{(i)} = E_{ox}^{(i)}\hat{\boldsymbol{x}} + E_{oy}^{(i)}\hat{\boldsymbol{y}} + E_{oz}^{(i)}\hat{\boldsymbol{z}}$. Invoke Maxwell's 1st equation, namely, $\boldsymbol{k} \cdot \boldsymbol{D}_{o} = 0$, to show that $E_{ox}^{(i)} = 0$.

2 pts c) Let $\boldsymbol{H}^{(i)}(\boldsymbol{r},t) = \boldsymbol{H}^{(i)}_{0}e^{i(\boldsymbol{k}^{(i)}\cdot\boldsymbol{r}-\omega t)}$, where $\boldsymbol{H}^{(i)}_{0} = H^{(i)}_{0x}\hat{\boldsymbol{x}} + H^{(i)}_{0y}\hat{\boldsymbol{y}} + H^{(i)}_{0z}\hat{\boldsymbol{z}}$. Invoking Maxwell's 3rd equation, namely, $\boldsymbol{k} \times \boldsymbol{E}_{0} = \omega \mu_{0} \mu(\omega) \boldsymbol{H}_{0}$, find $H^{(i)}_{0x}$, $H^{(i)}_{0y}$, and $H^{(i)}_{0z}$. (Hint: $H^{(i)}_{0x}$ turns out to be 0.)

The semi-infinite medium below the xy-plane at z = 0 is also linear, isotropic, and homogeneous, with permeability $\mu_0\mu_b(\omega)$ and permittivity $\varepsilon_0\varepsilon_b(\omega)$. However, this medium is not necessarily transparent, which means that μ_b and ε_b could be anywhere on the real axis or in the upper half of the complex plane.

- 1 pt d) Invoke the generalized version of Snell's law and the knowledge of $k_x^{(i)}$, $k_y^{(i)}$ to find $k_x^{(t)}$, $k_y^{(t)}$.
- 1 pt e) Use the dispersion relation $\mathbf{k}^{(t)} \cdot \mathbf{k}^{(t)} = (\omega/c)^2 \mu_b \varepsilon_b$ to find the complete expression of $\mathbf{k}^{(t)}$.
- 2 pts f) Invoke the continuity of E_{\parallel} at the interfacial *xy*-plane—a consequence of Maxwell's 3rd equation—to find $E_{0x}^{(t)}, E_{0y}^{(t)}$, the tangential components of the *E*-field inside the transmittance medium, in terms of the components of the incident *E*-field.
- 2 pts g) Invoking the continuity of D_{\perp} at the interfacial xy-plane—derived from Maxwell's 1st equation—find $E_{0z}^{(t)}$, the z-component of the *E*-field inside the transmittance medium, in terms of $E_{0z}^{(i)}$ and the material parameters ε_a , ε_b .
- 2 pts h) Recalling the continuity of H_{\parallel} at the interfacial plane derived from Maxwell's 2nd equation in the absence of surface currents — find $H_{0x}^{(t)}$ and $H_{0y}^{(t)}$, the tangential components of the *H*field inside the transmittance medium, in terms of $E_{0z}^{(t)}$ and the material parameters μ_a , ε_a .
- 2 pts i) Using the continuity of B_{\perp} at the interfacial plane—a consequence of Maxwell's 4th equation—find $H_{0z}^{(t)}$, the z-component of the *H*-field inside the transmittance medium, in terms of $E_{0y}^{(i)}$ and the material parameters $\mu_a, \mu_b, \varepsilon_a$.

Assuming that you have done everything correctly up to this point, you will notice that the plane-wave inside the transmittance medium violates at least one of Maxwell's equations; that is, (i) $\mathbf{k}^{(t)} \cdot \mathbf{D}_{0}^{(t)} \neq 0$, (ii) $\mathbf{k}^{(t)} \times \mathbf{H}_{0}^{(t)} \neq -\omega \mathbf{D}_{0}^{(t)}$, (iii) $\mathbf{k}^{(t)} \times \mathbf{E}_{0}^{(t)} \neq \omega \mathbf{B}_{0}^{(t)}$, (iv) $\mathbf{k}^{(t)} \cdot \mathbf{B}_{0}^{(t)} \neq 0$. This is because the scenario depicted in the above figure is physically impossible.