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Opti 501 Final Exam (12/13/2022) Time: 2 hours 
Please write your name and ID number on all the pages, then staple them together. 

Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) Recalling that 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬′(𝒓𝒓, 𝑡𝑡) + i𝑬𝑬″(𝒓𝒓, 𝑡𝑡) and 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯′(𝒓𝒓, 𝑡𝑡) + i𝑯𝑯″(𝒓𝒓, 𝑡𝑡), 
compare the following expressions that have been proposed for the Poynting vector: 

 (i) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)}; (ii) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡)} × Real{𝑯𝑯(𝒓𝒓, 𝑡𝑡)}. 

a) Which expression represents the correct form of the Poynting vector? What are the 𝑆𝑆𝑆𝑆 units (or 
dimensions) of 𝑬𝑬, 𝑯𝑯, and 𝑺𝑺 in each of the above expressions? (𝑆𝑆𝑆𝑆 is also called 𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀.) 

b) For each expression in (i) and (ii), write 𝑺𝑺(𝒓𝒓, 𝑡𝑡) in terms of the real and imaginary parts of the 
𝑬𝑬 and 𝑯𝑯 fields. Identify the extraneous term(s) that make one of the expressions incorrect. 

c) In the case of single-frequency (i.e., monochromatic) electromagnetic fields, one often writes 
the fields as 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔 and 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯(𝒓𝒓)𝑒𝑒−i𝜔𝜔𝜔𝜔, where 𝑬𝑬(𝒓𝒓) = 𝑬𝑬′(𝒓𝒓) + i𝑬𝑬″(𝒓𝒓) 
and 𝑯𝑯(𝒓𝒓) = 𝑯𝑯′(𝒓𝒓) + i𝑯𝑯″(𝒓𝒓). Write the correct expression of the Poynting vector for this case 
of a monochromatic field in terms of 𝑬𝑬′(𝒓𝒓), 𝑬𝑬″(𝒓𝒓), 𝑯𝑯′(𝒓𝒓), 𝑯𝑯″(𝒓𝒓), cos(𝜔𝜔𝑡𝑡), and sin(𝜔𝜔𝑡𝑡). 

d) Use 𝑺𝑺(𝒓𝒓, 𝑡𝑡) derived in part (c) to compute the time-averaged (or period-averaged) Poynting 
vector, namely, 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = 𝑇𝑇−1 ∫ 𝑺𝑺(𝒓𝒓, 𝑡𝑡)d𝑡𝑡𝑡𝑡0+𝑇𝑇

𝑡𝑡0
. Here 𝑡𝑡0 is an arbitrary point in time, while 

𝑇𝑇 = 2𝜋𝜋 𝜔𝜔⁄  is the period of oscillations. 
e) For the time-averaged 𝑺𝑺(𝒓𝒓, 𝑡𝑡) derived in part (d), show that 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Real{𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)}. 
Hint: cos2(𝜔𝜔𝑡𝑡) = ½[1 + cos(2𝜔𝜔𝑡𝑡)],  sin2(𝜔𝜔𝑡𝑡) = ½[1 − cos(2𝜔𝜔𝑡𝑡)],  sin(𝜔𝜔𝑡𝑡) cos(𝜔𝜔𝑡𝑡) = ½ sin(2𝜔𝜔𝑡𝑡). 
 
Problem 2) A monochromatic plane-wave of frequency 𝜔𝜔 arrives at normal incidence at the 
interface between free space and a metallic medium whose permeability and permittivity are 
specified as 𝜇𝜇0𝜇𝜇(𝜔𝜔) and 𝜀𝜀0𝜀𝜀(𝜔𝜔). At optical 
frequencies, one can set 𝜇𝜇(𝜔𝜔) = 1 and proceed to 
take the refractive index of the metallic medium as 
𝑛𝑛(𝜔𝜔) = �𝜀𝜀(𝜔𝜔). Assume that 𝜀𝜀(𝜔𝜔) can be anywhere 
in the upper-half of the complex plane and that, 
therefore, the refractive index can be written as 
𝑛𝑛(𝜔𝜔) = 𝑛𝑛′(𝜔𝜔) + i𝑛𝑛″(𝜔𝜔) with 𝑛𝑛″(𝜔𝜔) > 0. The incident 
𝐸𝐸-field is aligned with the 𝑥𝑥-axis, and the Fresnel 
reflection and transmission coefficients at the metallic 
surface are 𝜌𝜌 = (1 − 𝑛𝑛) (1 + 𝑛𝑛)⁄  and 𝜏𝜏 = 2 (1 + 𝑛𝑛)⁄ . 

a) Write expressions for the 𝑬𝑬 and 𝑯𝑯 fields of incident, reflected, and transmitted plane-waves. 

b) Inside the metallic medium, the bound electric current-density is 𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ =

−i𝜔𝜔𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡), where the material’s electric susceptibility is 𝜒𝜒𝑒𝑒(𝜔𝜔) = 𝜀𝜀(𝜔𝜔) − 1 =
𝑛𝑛2(𝜔𝜔) − 1. Find the bound electrical current throughout the entire depth of the metallic host 
by integrating 𝑱𝑱bound

(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) over the negative-half of the 𝑧𝑧-axis, i.e., from 𝑧𝑧 = −∞ to 0. 

c) In the limit of a perfect electrical conductor, when 𝑛𝑛″ → ∞, show that the integrated current 
obtained in part (b) is equal in magnitude (and ⊥ in direction) to the 𝐻𝐻-field immediately 
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above the metallic surface. This confirms that the discontinuity of the 𝐻𝐻-field at the interface 
between free space and a perfect conductor satisfies Maxwell’s second boundary condition. 

 
Problem 3) A homogeneous plane-wave of frequency 𝜔𝜔 propagates along the 𝑥𝑥-axis within a 
semi-infinite, linear, isotropic, homogeneous, transparent medium whose real-valued and 
positive permeability and permittivity are given by 
𝜇𝜇0𝜇𝜇𝑎𝑎(𝜔𝜔) and 𝜀𝜀0𝜀𝜀𝑎𝑎(𝜔𝜔). The (real-valued and positive) 
refractive index of the medium is, therefore, given by 
𝑛𝑛𝑎𝑎(𝜔𝜔) = �𝜇𝜇𝑎𝑎(𝜔𝜔)𝜀𝜀𝑎𝑎(𝜔𝜔). 

a) Use the dispersion relation 𝒌𝒌(i) ∙ 𝒌𝒌(i) = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 
to confirm that 𝒌𝒌(i) = (𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ )𝒙𝒙�. 

b) Let 𝑬𝑬(i)(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0
(i)𝑒𝑒i(𝒌𝒌(i)∙ 𝒓𝒓−𝜔𝜔𝜔𝜔), where 𝑬𝑬0
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c) Let 𝑯𝑯(i)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(i)𝑒𝑒i(𝒌𝒌(i)∙ 𝒓𝒓−𝜔𝜔𝜔𝜔), where 𝑯𝑯0
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equation, namely, 𝒌𝒌 × 𝑬𝑬0 = 𝜔𝜔𝜇𝜇0𝜇𝜇(𝜔𝜔)𝑯𝑯0, find 𝐻𝐻0𝑥𝑥
(i), 𝐻𝐻0𝑦𝑦

(i), and 𝐻𝐻0𝑧𝑧
(i). (Hint: 𝐻𝐻0𝑥𝑥

(i) turns out to be 0.) 

The semi-infinite medium below the 𝑥𝑥𝑦𝑦-plane at 𝑧𝑧 = 0 is also linear, isotropic, and 
homogeneous, with permeability 𝜇𝜇0𝜇𝜇𝑏𝑏(𝜔𝜔) and permittivity 𝜀𝜀0𝜀𝜀𝑏𝑏(𝜔𝜔). However, this medium is 
not necessarily transparent, which means that 𝜇𝜇𝑏𝑏 and 𝜀𝜀𝑏𝑏 could be anywhere on the real axis or in 
the upper half of the complex plane. 

d) Invoke the generalized version of Snell’s law and the knowledge of 𝑘𝑘𝑥𝑥
(i), 𝑘𝑘𝑦𝑦

(i) to find 𝑘𝑘𝑥𝑥
(t), 𝑘𝑘𝑦𝑦

(t). 

e) Use the dispersion relation 𝒌𝒌(t) ∙ 𝒌𝒌(t) = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 to find the complete expression of  𝒌𝒌(t). 

f ) Invoke the continuity of 𝑬𝑬∥ at the interfacial 𝑥𝑥𝑦𝑦-plane — a consequence of Maxwell’s 3rd 
equation — to find 𝐸𝐸0𝑥𝑥

(t), 𝐸𝐸0𝑦𝑦
(t), the tangential components of the 𝐸𝐸-field inside the transmittance 

medium, in terms of the components of the incident 𝐸𝐸-field. 

g) Invoking the continuity of 𝑫𝑫⊥ at the interfacial 𝑥𝑥𝑦𝑦-plane — derived from Maxwell’s 1st 
equation — find 𝐸𝐸0𝑧𝑧

(t), the 𝑧𝑧-component of the 𝐸𝐸-field inside the transmittance medium, in 
terms of 𝐸𝐸0𝑧𝑧

(i) and the material parameters 𝜀𝜀𝑎𝑎, 𝜀𝜀𝑏𝑏. 

h) Recalling the continuity of 𝑯𝑯∥ at the interfacial plane — derived from Maxwell’s 2nd equation 
in the absence of surface currents — find 𝐻𝐻0𝑥𝑥

(t) and 𝐻𝐻0𝑦𝑦
(t), the tangential components of the 𝐻𝐻-

field inside the transmittance medium, in terms of 𝐸𝐸0𝑧𝑧
(i) and the material parameters 𝜇𝜇𝑎𝑎, 𝜀𝜀𝑎𝑎. 

i) Using the continuity of 𝑩𝑩⊥ at the interfacial plane — a consequence of Maxwell’s 4th 
equation — find 𝐻𝐻0𝑧𝑧

(t), the 𝑧𝑧-component of the 𝐻𝐻-field inside the transmittance medium, in 
terms of 𝐸𝐸0𝑦𝑦

(i) and the material parameters 𝜇𝜇𝑎𝑎, 𝜇𝜇𝑏𝑏, 𝜀𝜀𝑎𝑎. 

Assuming that you have done everything correctly up to this point, you will notice that the 
plane-wave inside the transmittance medium violates at least one of Maxwell’s equations; that is, 
(i) 𝒌𝒌(t) ∙ 𝑫𝑫0

(t) ≠ 0, (ii) 𝒌𝒌(t) × 𝑯𝑯0
(t) ≠ −𝜔𝜔𝑫𝑫0

(t), (iii) 𝒌𝒌(t) × 𝑬𝑬0
(t) ≠ 𝜔𝜔𝑩𝑩0

(t), (iv) 𝒌𝒌(t) ∙ 𝑩𝑩0
(t) ≠ 0. This is 

because the scenario depicted in the above figure is physically impossible. 
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