Problem 1)

a)
$$\rho_{\text{bound}}^{(m)}(\mathbf{r}) = -\nabla \cdot \mathbf{M}(\mathbf{r}) = -\frac{\partial (r^2 M_r)}{r^2 \partial r} = -(M_0/R^2) \frac{d(r^4 e^{-r/R})}{r^2 dr}$$
$$= -(M_0/R^2) \frac{4r^3 e^{-r/R} - (r^4/R)e^{-r/R}}{r^2} = (M_0/R^3)(r^2 - 4Rr)e^{-r/R} \quad [\text{weber/m}^3].$$

b) $\boldsymbol{J}_{\text{bound}}^{(e)}(\boldsymbol{r}) = \mu_0^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}) = \mu_0^{-1} \left(\frac{1}{r \sin \theta} \frac{\partial M_r}{\partial \varphi} \, \boldsymbol{\widehat{\theta}} - \frac{\partial M_r}{r \partial \theta} \, \boldsymbol{\widehat{\varphi}} \right) = 0 \quad [\text{ampere}/\text{m}^2].$

Note that M(r) is zero at the origin (i.e., at r = 0), rises to its maximum value at r = 2R, and from there declines to zero as $r \to \infty$. The corresponding magnetic charge-density $\rho_{\text{bound}}^{(m)}(r)$ is zero at r = 0, has a minimum at $r = (3 - \sqrt{5})R$, returns to zero at r = 4R, reaches its maximum value at $r = (3 + \sqrt{5})R$, then declines to zero as $r \to \infty$. In contrast, the bound electric current-density $J_{\text{bound}}^{(e)}(r)$ is zero everywhere, as the various microscopic loops of current cancel each other out.

Problem 2) a) mass-density $\zeta = m_0 / \text{volume} \cong m_0 / (2\pi Rh\delta)$ [kg/m³].

- b) Total charge $Q = \text{volume} \times \text{charge-density} \cong (2\pi Rh\delta)\rho$ [coulomb].
- c) Given that the linear mechanical momentum of a small volume element dv of the ring is $\mathbf{p}dv = (\zeta dv)R\omega\widehat{\boldsymbol{\varphi}}$, we will have $\mathcal{L} = \int_{\text{ring}} (\mathbf{r} \times \mathbf{p}) dv \cong \int_{\text{ring}} (R\widehat{\boldsymbol{r}}_{\parallel} \times \zeta R\omega\widehat{\boldsymbol{\varphi}}) dv = m_0 R^2 \omega \widehat{\boldsymbol{z}}$. The units of \mathcal{L} are [kg \cdot m²/sec]. (Note that, in general, $\mathbf{r} = R\widehat{\boldsymbol{r}}_{\parallel} + z\widehat{\boldsymbol{z}}$. However, $\widehat{\boldsymbol{z}} \times \widehat{\boldsymbol{\varphi}} = -\widehat{\boldsymbol{r}}_{\parallel}$ integrates to zero, which is why it has been dropped from the preceding equation.)
- d) $m \cong \mu_0(\rho R \omega)(h\delta)(\pi R^2)\hat{z} = \frac{1}{2}\mu_0 Q R^2 \omega \hat{z}$ [henry · ampere · meter = weber · meter]. current-density cross-section loop area
- e) The magnetic dipole moment m will be anti-parallel to the ring's angular momentum \mathcal{L} if the rotating charge Q happens to be negative.

Problem 3) a) (i) $\nabla \cdot D(\mathbf{r}, t) = \rho_{\text{free}}(\mathbf{r}, t)$, where $D(\mathbf{r}, t) = \varepsilon_0 E(\mathbf{r}, t) + P(\mathbf{r}, t)$.

The units of polarization P are coulomb/m², with those of charge, coulomb, being ampere \cdot sec.

The units of displacement **D** are the same as those of **P**, namely, ampere \cdot sec/m².

The units of ρ_{free} are coulomb/m³, i.e., ampere \cdot sec/m³.

The units of **E** are volt/m. Invoking the Lorentz force law, f = qE, reveals the units of **E** to be the same as those of force (kg · m/sec²) divided by the units of electrical charge (coulomb). Therefore, "volt" is kg · m²/(ampere · sec³).

The units of ε_0 are farad/m. For a capacitor having capacitance *C*, total (positive) charge *Q*, and voltage *V*, we have Q = CV, with the units of *Q*, *C*, and *V* being coulomb, farad, and volt, respectively. Consequently, farad = coulomb/volt, which makes the units of $\varepsilon_0 E$ equal to coulomb/m², consistent with those of *P* and *D*. Substitution for coulomb and volt now yields the units of ε_0 in terms of the fundamental MKSA units as ampere² · sec⁴/ (kg · m³).

Digression. An alternative way of expressing farad in terms of the fundamental units is by way of the formula $\mathcal{E} = \frac{1}{2}\varepsilon_0 E^2$ for the energy-density of the *E*-field, where the units of \mathcal{E} are joule/m³. Thus, kg · m²/(sec² · m³) = (farad/m) · (volt/m)², which yields farad = kg · m²/(volt² · sec²) = ampere² · sec⁴/(kg · m²).

In Maxwell's first equation, the divergence operator divides the units of D by the units of length, namely, meter. Thus, the left-hand side of the equation has units of coulomb/m³, in agreement with those of ρ_{free} on the right-hand side.

(ii)
$$\nabla \times H(\mathbf{r},t) = J_{\text{free}}(\mathbf{r},t) + \partial D(\mathbf{r},t)/\partial t.$$

The units of J_{free} are ampere/m², which are the same as those of $\partial D/\partial t$, since D has units of coulomb/m², which, upon differentiation with respect to time (i.e., division of the units by sec), become coulomb/(m² · sec) = ampere/m².

The units of *H* are ampere/m. Considering that the curl operation ($\nabla \times$) involves differentiation with respect to spatial coordinates (*x*, *y*, *z*), which have the units of length (i.e., meter), the left-hand side of Maxwell's 2nd equation has units of ampere/m², in agreement with those of the right-hand side.

b) (iii)
$$\oint_{\text{closed loop}} \boldsymbol{E}(\boldsymbol{r},t) \cdot d\boldsymbol{\ell} = -\frac{d}{dt} \int_{\text{surface}} \boldsymbol{B}(\boldsymbol{r},t) \cdot d\boldsymbol{s}$$
, where $\boldsymbol{B}(\boldsymbol{r},t) = \mu_0 \boldsymbol{H}(\boldsymbol{r},t) + \boldsymbol{M}(\boldsymbol{r},t)$.

This integral form of Maxwell's 3^{rd} equation is obtained from the corresponding differential form, namely, $\nabla \times E(\mathbf{r}, t) = -\partial B(\mathbf{r}, t)/\partial t$, via the application of the Stokes theorem.

On the left-hand side of the equation, the units of E are volt/m, which, upon multiplication by the units of d ℓ (namely, meter) become volt = kg · m²/(ampere · sec³).

The units of **B** and **M** are weber/m². From the Lorentz force law $f = qV \times B$, we find that weber/m² = newton/(coulomb · m/sec), which yields weber = kg · m²/(ampere · sec²).

The units of μ_0 are henry/m. Considering that the speed of light in vacuum is $c = 1/\sqrt{\mu_0 \varepsilon_0}$, we arrive at (henry/m) · (farad/m) = (sec/m)², yielding henry = sec²/farad = kg · m²/(ampere² · sec²). Multiplying the units of μ_0 (i.e., henry/m) into those of **H** (i.e., ampere/m) now yields the units of $\mu_0 H$ as kg/(ampere · sec²), consistent with the units of **B** and **M** (i.e., weber/m²).

Digression. An alternative method of expressing henry in terms of the fundamental MKSA units is by way of the relation $\Phi = LI$ between the magnetic flux Φ (whose units are weber), the inductance *L* (whose units are henry), and the electric current *I* (whose units are ampere). Thus, henry = weber/ampere = kg · m²/(ampere² · sec²).

One may also invoke the formula $\mathcal{E} = \frac{1}{2}\mu_0 H^2$ for the energy-density of the *H*-field, where the units of \mathcal{E} are joule/m³. Thus, kg · m²/(sec² · m³) = (henry/m) · (ampere/m)², which yields henry = kg · m²/(ampere² · sec²).

On the right-hand side of the integral form of Maxwell's 3^{rd} equation, the units of **B** (i.e., weber/m²) must be multiplied into the units of the differential surface area ds (i.e., m²) to yield weber for the overall units of the integral. Differentiation with respect to time makes the units on the right-hand side of the equation equal to weber/sec = kg · m²/(ampere · sec³), which agree with the units on the left-hand side of the equation, namely, volt = kg · m²/(ampere · sec³).

iv) $\oint_{\text{closed surface}} B(\mathbf{r}, t) \cdot d\mathbf{s} = 0$, obtained from $\nabla \cdot B(\mathbf{r}, t) = 0$ via Gauss's theorem.

The units of **B** are weber/m². Upon integration over a closed surface S, the units of **B** are multiplied by those of the infinitesimal surface area ds, which has the units of area (i.e., m²). Thus, the units on the left-hand side of the integral form of Maxwell's 4th equation are weber.

Problem 4) a) The infinitesimal dipole moment formed between the positive and negative charges at y and -y is $L\delta\rho(y)dy$ times the separation 2y between these charges. The direction of this dipole is along \hat{y} . Integrating over y (from y = 0 to L) yields

$$\boldsymbol{p} = \left[\int_{0}^{L} 2yL\delta\rho(y)dy\right]\boldsymbol{\hat{y}} = 2L\delta\left[\int_{0}^{L} y\rho(y)dy\right]\boldsymbol{\hat{y}}.$$
 (1)

b) For sufficiently small L, the polarization of the pair of squares is given by their dipole moment p divided by the overall volume $2L^2\delta$ of the pair; that is,

$$\boldsymbol{P} = \boldsymbol{p}/(2L^2\delta) = L^{-1} \left[\int_0^L y \rho(y) \mathrm{d}y \right] \hat{\boldsymbol{y}}.$$
 (2)

c) The magnitude of P(t) is the same as that of P in Eq.(2), but its direction is now given by $\cos(\omega t) \hat{y} - \sin(\omega t) \hat{x}$. Therefore,

$$\boldsymbol{P}(t) = L^{-1} \left[\int_0^L y \rho(y) dy \right] \left[\cos(\omega t) \, \hat{\boldsymbol{y}} - \sin(\omega t) \, \hat{\boldsymbol{x}} \right]. \tag{3}$$

d) As shown in figure (b), at a point (x, y, z, t) on the surface of the red square at a distance $r = \sqrt{x^2 + y^2}$ from the z-axis, the velocity vector will be

$$\boldsymbol{\nu}(t) = r\omega[-\sin(\omega t + 90^\circ)\,\hat{\boldsymbol{x}} + \cos(\omega t + 90^\circ)\,\hat{\boldsymbol{y}}] = -r\omega[\cos(\omega t)\,\hat{\boldsymbol{x}} + \sin(\omega t)\,\hat{\boldsymbol{y}}]. \tag{4}$$

The current-density at this point is, therefore, $J(t) = \rho(r)v(t)$. As for the blue square, the velocity at the corresponding point (i.e., at a distance r from the z-axis at time t) is the negative of v(t) of Eq.(4); however, the charge-density is also the negative of that at the corresponding point on the red square. Consequently, the current-density will be the same on the faces of both squares. Thus, at a distance r from the z-axis at time t, the current-density on both squares is

$$\mathbf{J}(t) = \rho(r)\mathbf{v}(t) = -r\omega\rho(r)[\cos(\omega t)\,\hat{\mathbf{x}} + \sin(\omega t)\,\hat{\mathbf{y}}].$$
(5)

e) The direction of the J vector at time t is the same as that of the velocity vector v(t) given by Eq.(4); that is, $-\cos(\omega t) \hat{x} - \sin(\omega t) \hat{y}$. The current passing through the surface of the red square along the direction of J(t) is $I_{red}(t) = \int_{red square} J(t) \cdot ds = \int_{r=0}^{L} r\omega \rho(r) L dr$. Doubling this current then yields the current passing through both (red and blue) squares, as follows:

$$I(t) = I_{\rm red}(t) + I_{\rm blue}(t) = 2L\omega \int_{r=0}^{L} r\rho(r) dr.$$
 (6)

f) For sufficiently small L, we divide the total current I(t) of Eq.(6) by the surface area $2L^2$ of the pair to obtain the magnitude $\bar{J}(t)$ of the average current-density. Multiplication by the unit-vector along the flow direction then yields

$$\bar{\boldsymbol{J}}(t) = \frac{I(t)}{2L^2} \left[-\cos(\omega t)\,\hat{\boldsymbol{x}} - \sin(\omega t)\,\hat{\boldsymbol{y}} \right] = -(\omega/L) \left[\int_{r=0}^{L} r\rho(r) dr \right] \left[\cos(\omega t)\,\hat{\boldsymbol{x}} + \sin(\omega t)\,\hat{\boldsymbol{y}} \right].$$
(7)

g) Comparing Eqs.(3) and (7), we finally arrive at the desired identity, namely,

$$\boldsymbol{J}_{\text{bound}}^{(e)} = \mathrm{d}\boldsymbol{P}(t)/\mathrm{d}t = -(\omega/L) \left[\int_{y=0}^{L} y\rho(y) \mathrm{d}y \right] \left[\sin(\omega t) \,\widehat{\boldsymbol{y}} + \cos(\omega t) \,\widehat{\boldsymbol{x}} \right] = \bar{\boldsymbol{J}}(t). \tag{8}$$