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Opti 501 1st Midterm Solutions (9/29/2022) Time: 75 minutes 

Problem 1) 

a) 𝜌𝜌bound
(𝑚𝑚) (𝒓𝒓) = −𝜵𝜵 ∙ 𝑴𝑴(𝒓𝒓) = −𝜕𝜕(𝑟𝑟2𝑀𝑀𝑟𝑟)

𝑟𝑟2𝜕𝜕𝑟𝑟
= −(𝑀𝑀0 𝑅𝑅2⁄ ) d(𝑟𝑟4𝑒𝑒−𝑟𝑟 𝑅𝑅⁄ )

𝑟𝑟2d𝑟𝑟
 

 = −(𝑀𝑀0 𝑅𝑅2⁄ ) 4𝑟𝑟
3𝑒𝑒−𝑟𝑟 𝑅𝑅⁄  − (𝑟𝑟4 𝑅𝑅⁄ )𝑒𝑒−𝑟𝑟 𝑅𝑅⁄

𝑟𝑟2
= (𝑀𝑀0 𝑅𝑅3⁄ )(𝑟𝑟2 − 4𝑅𝑅𝑟𝑟)𝑒𝑒−𝑟𝑟 𝑅𝑅⁄    [weber m3⁄ ]. 

b) 𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴(𝒓𝒓) = 𝜇𝜇0−1 �

1
𝑟𝑟 sin𝜃𝜃

𝜕𝜕𝑀𝑀𝑟𝑟
𝜕𝜕𝜕𝜕

𝜽𝜽� − 𝜕𝜕𝑀𝑀𝑟𝑟
𝑟𝑟𝜕𝜕𝜃𝜃

𝝋𝝋�� = 0        [ampere m2⁄ ]. 

Note that 𝑴𝑴(𝒓𝒓) is zero at the origin (i.e., at 𝑟𝑟 = 0), rises to its maximum value at 𝑟𝑟 = 2𝑅𝑅, 
and from there declines to zero as 𝑟𝑟 → ∞. The corresponding magnetic charge-density 𝜌𝜌bound

(𝑚𝑚) (𝒓𝒓) 
is zero at 𝑟𝑟 = 0, has a minimum at 𝑟𝑟 = (3 − √5)𝑅𝑅, returns to zero at 𝑟𝑟 = 4𝑅𝑅, reaches its 
maximum value at 𝑟𝑟 = (3 + √5)𝑅𝑅, then declines to zero as 𝑟𝑟 → ∞. In contrast, the bound 
electric current-density 𝑱𝑱bound

(𝑒𝑒) (𝒓𝒓) is zero everywhere, as the various microscopic loops of current 
cancel each other out. 
 
Problem 2) a) mass-density 𝜁𝜁 = 𝑚𝑚0 volume⁄ ≅ 𝑚𝑚0 (2𝜋𝜋𝑅𝑅ℎ𝛿𝛿)⁄     [kg/m3]. 

b) Total charge 𝑄𝑄 = volume × charge-density ≅ (2𝜋𝜋𝑅𝑅ℎ𝛿𝛿)𝜌𝜌    [coulomb]. 

c) Given that the linear mechanical momentum of a small volume element d𝑣𝑣 of the ring is 
𝒑𝒑d𝑣𝑣 = (𝜁𝜁d𝑣𝑣)𝑅𝑅𝑅𝑅𝝋𝝋� , we will have 𝓛𝓛 = ∫ (𝒓𝒓 × 𝒑𝒑)d𝑣𝑣

ring
≅ ∫ (𝑅𝑅𝒓𝒓�∥ × 𝜁𝜁𝑅𝑅𝑅𝑅𝝋𝝋�)d𝑣𝑣

ring
= 𝑚𝑚0𝑅𝑅2𝑅𝑅𝒛𝒛�. 

The units of 𝓛𝓛 are [kg ∙ m2/sec]. (Note that, in general, 𝒓𝒓 = 𝑅𝑅𝒓𝒓�∥ + 𝑧𝑧𝒛𝒛�. However, 𝒛𝒛� × 𝝋𝝋� = −𝒓𝒓�∥ 
integrates to zero, which is why it has been dropped from the preceding equation.) 

d) 𝓶𝓶 ≅ 𝜇𝜇0(𝜌𝜌𝑅𝑅𝑅𝑅)(ℎ𝛿𝛿)(𝜋𝜋𝑅𝑅2)𝒛𝒛� = ½𝜇𝜇0𝑄𝑄𝑅𝑅2𝑅𝑅𝒛𝒛�      [henry ∙ ampere ∙ meter = weber ∙ meter]. 
 
 
e) The magnetic dipole moment 𝓶𝓶 will be anti-parallel to the ring’s angular momentum 𝓛𝓛 if the 

rotating charge 𝑄𝑄 happens to be negative. 
 
Problem 3) a) (i) 𝜵𝜵 ∙ 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡),   where 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝑬𝑬(𝒓𝒓, 𝑡𝑡) + 𝑷𝑷(𝒓𝒓, 𝑡𝑡). 

The units of polarization 𝑷𝑷 are coulomb/m2, with those of charge, coulomb, being ampere ∙ sec. 

The units of displacement 𝑫𝑫 are the same as those of 𝑷𝑷, namely, ampere ∙ sec/m2. 

The units of 𝜌𝜌free are coulomb/m3, i.e., ampere ∙ sec/m3. 

The units of 𝑬𝑬 are volt/m. Invoking the Lorentz force law, 𝒇𝒇 = 𝑞𝑞𝑬𝑬, reveals the units of 𝑬𝑬 to be 
the same as those of force (kg ∙ m/sec2) divided by the units of electrical charge (coulomb). 
Therefore, “volt” is kg ∙ m2/(ampere ∙ sec3). 

The units of 𝜀𝜀0 are farad/m. For a capacitor having capacitance 𝐶𝐶, total (positive) charge 𝑄𝑄, and 
voltage 𝑉𝑉, we have 𝑄𝑄 = 𝐶𝐶𝑉𝑉, with the units of 𝑄𝑄, 𝐶𝐶, and 𝑉𝑉 being coulomb, farad, and volt, 
respectively. Consequently, farad = coulomb/volt, which makes the units of 𝜀𝜀0𝑬𝑬 equal to 
coulomb/m2, consistent with those of 𝑷𝑷 and 𝑫𝑫. Substitution for coulomb and volt now yields the 
units of 𝜀𝜀0 in terms of the fundamental MKSA units as ampere2 ∙ sec4/ (kg ∙ m3). 

current-density cross-section loop area 
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Digression. An alternative way of expressing farad in terms of the fundamental units is by way of the formula 
ℰ = ½𝜀𝜀0𝐸𝐸2 for the energy-density of the 𝐸𝐸-field, where the units of ℰ are joule/m3. Thus, kg ∙ m2/(sec2 ∙ m3) =
 (farad/m) ∙ (volt/m)2, which yields farad = kg ∙ m2/(volt2 ∙ sec2) = ampere2 ∙ sec4/(kg ∙ m2). 

In Maxwell’s first equation, the divergence operator divides the units of 𝑫𝑫 by the units of length, 
namely, meter. Thus, the left-hand side of the equation has units of coulomb/m3, in agreement 
with those of 𝜌𝜌free on the right-hand side. 

(ii) 𝜵𝜵 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝑫𝑫(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ . 

The units of 𝑱𝑱free are ampere/m2, which are the same as those of 𝜕𝜕𝑫𝑫 𝜕𝜕𝑡𝑡⁄ , since 𝑫𝑫 has units of 
coulomb/m2, which, upon differentiation with respect to time (i.e., division of the units by sec), 
become coulomb/(m2 ∙ sec) =  ampere/m2. 

The units of 𝑯𝑯 are ampere/m. Considering that the curl operation (𝜵𝜵 ×) involves differentiation 
with respect to spatial coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧), which have the units of length (i.e., meter), the left-
hand side of Maxwell’s 2nd equation has units of ampere/m2, in agreement with those of the 
right-hand side. 

b) (iii) ∮ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) ∙ d𝓵𝓵
closed loop

= − d
d𝑡𝑡 ∫ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) ∙ d𝒔𝒔

surface
,  where 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 𝜇𝜇0𝑯𝑯(𝒓𝒓, 𝑡𝑡) + 𝑴𝑴(𝒓𝒓, 𝑡𝑡). 

This integral form of Maxwell’s 3rd equation is obtained from the corresponding differential 
form, namely, 𝜵𝜵 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ , via the application of the Stokes theorem. 

On the left-hand side of the equation, the units of 𝑬𝑬 are volt/m, which, upon multiplication by the 
units of d𝓵𝓵 (namely, meter) become volt = kg ∙ m2/(ampere ∙ sec3).  

The units of 𝑩𝑩 and 𝑴𝑴 are weber/m2. From the Lorentz force law 𝒇𝒇 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩, we find that 
weber/m2 = newton/(coulomb ∙ m/sec), which yields weber = kg ∙ m2/(ampere ∙ sec2). 

The units of 𝜇𝜇0 are henry/m. Considering that the speed of light in vacuum is 𝑐𝑐 = 1 �𝜇𝜇0𝜀𝜀0⁄ , we 
arrive at (henry/m) ∙ (farad/m) = (sec/m)2, yielding henry = sec2/farad = kg ∙ m2/(ampere2 ∙ sec2). 
Multiplying the units of 𝜇𝜇0 (i.e., henry/m) into those of 𝑯𝑯 (i.e., ampere/m) now yields the units of 
𝜇𝜇0𝑯𝑯 as kg/(ampere ∙ sec2), consistent with the units of 𝑩𝑩 and 𝑴𝑴 (i.e., weber/m2). 

Digression. An alternative method of expressing henry in terms of the fundamental MKSA units is by way of the 
relation Φ = 𝐿𝐿𝐿𝐿 between the magnetic flux Φ (whose units are weber), the inductance 𝐿𝐿 (whose units are henry), and 
the electric current 𝐿𝐿 (whose units are ampere). Thus, henry = weber/ampere = kg ∙ m2/(ampere2 ∙ sec2). 

One may also invoke the formula ℰ = ½𝜇𝜇0𝐻𝐻2 for the energy-density of the 𝐻𝐻-field, where the units of ℰ are 
joule/m3. Thus, kg ∙ m2/(sec2 ∙ m3) = (henry/m) ∙ (ampere/m)2, which yields henry = kg ∙ m2/(ampere2 ∙ sec2). 

On the right-hand side of the integral form of Maxwell’s 3rd equation, the units of 𝑩𝑩 (i.e., 
weber/m2) must be multiplied into the units of the differential surface area d𝒔𝒔 (i.e., m2) to yield 
weber for the overall units of the integral. Differentiation with respect to time makes the units on 
the right-hand side of the equation equal to weber/sec = kg ∙ m2/(ampere ∙ sec3), which agree with 
the units on the left-hand side of the equation, namely, volt = kg ∙ m2/(ampere ∙ sec3). 

iv) ∮ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) ∙ d𝒔𝒔
closed surface

= 0, obtained from 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0 via Gauss’s theorem. 

The units of 𝑩𝑩 are weber/m2. Upon integration over a closed surface 𝑆𝑆, the units of 𝑩𝑩 are 
multiplied by those of the infinitesimal surface area d𝒔𝒔, which has the units of area (i.e., m2). 
Thus, the units on the left-hand side of the integral form of Maxwell’s 4th equation are weber. 
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Problem 4) a) The infinitesimal dipole moment formed between the positive and negative 
charges at 𝑦𝑦 and −𝑦𝑦 is 𝐿𝐿𝛿𝛿𝜌𝜌(𝑦𝑦)d𝑦𝑦 times the separation 2𝑦𝑦 between these charges. The direction 
of this dipole is along 𝒚𝒚�. Integrating over 𝑦𝑦 (from 𝑦𝑦 = 0 to 𝐿𝐿) yields 

 𝒑𝒑 = �∫ 2𝑦𝑦𝐿𝐿𝛿𝛿𝜌𝜌(𝑦𝑦)d𝑦𝑦𝐿𝐿

0
�𝒚𝒚� = 2𝐿𝐿𝛿𝛿�∫ 𝑦𝑦𝜌𝜌(𝑦𝑦)d𝑦𝑦𝐿𝐿

0
�𝒚𝒚�. (1) 

b) For sufficiently small 𝐿𝐿, the polarization of the pair of squares is given by their dipole moment 
𝒑𝒑 divided by the overall volume 2𝐿𝐿2𝛿𝛿 of the pair; that is, 

 𝑷𝑷 = 𝒑𝒑 (2𝐿𝐿2𝛿𝛿)⁄ = 𝐿𝐿−1�∫ 𝑦𝑦𝜌𝜌(𝑦𝑦)d𝑦𝑦𝐿𝐿

0
�𝒚𝒚�. (2) 

c) The magnitude of 𝑷𝑷(𝑡𝑡) is the same as that of 𝑷𝑷 in Eq.(2), but its direction is now given by 
cos(𝑅𝑅𝑡𝑡)𝒚𝒚� − sin(𝑅𝑅𝑡𝑡)𝒙𝒙�. Therefore, 

 𝑷𝑷(𝑡𝑡) = 𝐿𝐿−1�∫ 𝑦𝑦𝜌𝜌(𝑦𝑦)d𝑦𝑦𝐿𝐿

0
�[cos(𝑅𝑅𝑡𝑡)𝒚𝒚� − sin(𝑅𝑅𝑡𝑡)𝒙𝒙�]. (3) 

d) As shown in figure (𝕓𝕓), at a point (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) on the surface of the red square at a distance 
𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 from the 𝑧𝑧-axis, the velocity vector will be 

 𝒗𝒗(𝑡𝑡) = 𝑟𝑟𝑅𝑅[− sin(𝑅𝑅𝑡𝑡 + 90°)𝒙𝒙� + cos(𝑅𝑅𝑡𝑡 + 90°)𝒚𝒚�] = −𝑟𝑟𝑅𝑅[cos(𝑅𝑅𝑡𝑡)𝒙𝒙� + sin(𝑅𝑅𝑡𝑡)𝒚𝒚�]. (4) 

The current-density at this point is, therefore, 𝑱𝑱(𝑡𝑡) = 𝜌𝜌(𝑟𝑟)𝒗𝒗(𝑡𝑡). As for the blue square, the 
velocity at the corresponding point (i.e., at a distance 𝑟𝑟 from the 𝑧𝑧-axis at time 𝑡𝑡) is the negative 
of 𝒗𝒗(𝑡𝑡) of Eq.(4); however, the charge-density is also the negative of that at the corresponding 
point on the red square. Consequently, the current-density will be the same on the faces of both 
squares. Thus, at a distance 𝑟𝑟 from the 𝑧𝑧-axis at time 𝑡𝑡, the current-density on both squares is 

 𝑱𝑱(𝑡𝑡) = 𝜌𝜌(𝑟𝑟)𝒗𝒗(𝑡𝑡) = −𝑟𝑟𝑅𝑅𝜌𝜌(𝑟𝑟)[cos(𝑅𝑅𝑡𝑡)𝒙𝒙� + sin(𝑅𝑅𝑡𝑡)𝒚𝒚�]. (5) 

e) The direction of the 𝑱𝑱 vector at time 𝑡𝑡 is the same as that of the velocity vector 𝒗𝒗(𝑡𝑡) given by 
Eq.(4); that is, − cos(𝑅𝑅𝑡𝑡)𝒙𝒙� − sin(𝑅𝑅𝑡𝑡)𝒚𝒚�. The current passing through the surface of the red 
square along the direction of 𝑱𝑱(𝑡𝑡) is 𝐿𝐿red(𝑡𝑡) = ∫ 𝑱𝑱(𝑡𝑡) ∙ d𝒔𝒔

red square
= ∫ 𝑟𝑟𝑅𝑅𝜌𝜌(𝑟𝑟)𝐿𝐿d𝑟𝑟𝐿𝐿

𝑟𝑟=0
. Doubling 

this current then yields the current passing through both (red and blue) squares, as follows: 

 𝐿𝐿(𝑡𝑡) = 𝐿𝐿red(𝑡𝑡) + 𝐿𝐿blue(𝑡𝑡) = 2𝐿𝐿𝑅𝑅 ∫ 𝑟𝑟𝜌𝜌(𝑟𝑟)d𝑟𝑟𝐿𝐿

𝑟𝑟=0
. (6) 

f ) For sufficiently small 𝐿𝐿, we divide the total current 𝐿𝐿(𝑡𝑡) of Eq.(6) by the surface area 2𝐿𝐿2 of 
the pair to obtain the magnitude 𝐽𝐽(̅𝑡𝑡) of the average current-density. Multiplication by the 
unit-vector along the flow direction then yields 

 �̅�𝑱(𝑡𝑡) = 𝐼𝐼(𝑡𝑡)
2𝐿𝐿2

[− cos(𝑅𝑅𝑡𝑡)𝒙𝒙� − sin(𝑅𝑅𝑡𝑡)𝒚𝒚�] = −(𝑅𝑅 𝐿𝐿⁄ )�∫ 𝑟𝑟𝜌𝜌(𝑟𝑟)d𝑟𝑟𝐿𝐿

𝑟𝑟=0
�[cos(𝑅𝑅𝑡𝑡)𝒙𝒙� + sin(𝑅𝑅𝑡𝑡)𝒚𝒚�]. 

 (7) 
g) Comparing Eqs.(3) and (7), we finally arrive at the desired identity, namely, 

 𝑱𝑱bound
(𝑒𝑒) = d𝑷𝑷(𝑡𝑡) d𝑡𝑡⁄ = −(𝑅𝑅 𝐿𝐿⁄ ) �∫ 𝑦𝑦𝜌𝜌(𝑦𝑦)d𝑦𝑦𝐿𝐿

𝑦𝑦=0
� [sin(𝑅𝑅𝑡𝑡)𝒚𝒚� + cos(𝑅𝑅𝑡𝑡)𝒙𝒙�] = �̅�𝑱(𝑡𝑡). (8) 


