Problem 1)

a) $\quad \rho_{\text {bound }}^{(m)}(\boldsymbol{r})=-\boldsymbol{\nabla} \cdot \boldsymbol{M}(\boldsymbol{r})=-\frac{\partial\left(r^{2} M_{r}\right)}{r^{2} \partial r}=-\left(M_{0} / R^{2}\right) \frac{\mathrm{d}\left(r^{4} e^{-r / R}\right)}{r^{2} \mathrm{~d} r}$

$$
=-\left(M_{0} / R^{2}\right) \frac{4 r^{3} e^{-r / R}-\left(r^{4} / R\right) e^{-r / R}}{r^{2}}=\left(M_{0} / R^{3}\right)\left(r^{2}-4 R r\right) e^{-r / R} \quad\left[\text { weber } / \mathrm{m}^{3}\right] .
$$

b) $\quad \boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r})=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r})=\mu_{0}^{-1}\left(\frac{1}{r \sin \theta} \frac{\partial M_{r}}{\partial \varphi} \widehat{\boldsymbol{\theta}}-\frac{\partial M_{r}}{r \partial \theta} \widehat{\boldsymbol{\varphi}}\right)=0 \quad$ [ampere $/ \mathrm{m}^{2}$].

Note that $\boldsymbol{M}(\boldsymbol{r})$ is zero at the origin (i.e., at $r=0$), rises to its maximum value at $r=2 R$, and from there declines to zero as $r \rightarrow \infty$. The corresponding magnetic charge-density $\rho_{\text {bound }}^{(m)}(\boldsymbol{r})$ is zero at $r=0$, has a minimum at $r=(3-\sqrt{5}) R$, returns to zero at $r=4 R$, reaches its maximum value at $r=(3+\sqrt{5}) R$, then declines to zero as $r \rightarrow \infty$. In contrast, the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r})$ is zero everywhere, as the various microscopic loops of current cancel each other out.

Problem 2) a) mass-density $\zeta=m_{0} /$ volume $\cong m_{0} /(2 \pi R h \delta) \quad\left[\mathrm{kg} / \mathrm{m}^{3}\right]$.
b) Total charge $Q=$ volume \times charge-density $\cong(2 \pi R h \delta) \rho \quad$ [coulomb].
c) Given that the linear mechanical momentum of a small volume element $\mathrm{d} v$ of the ring is $\boldsymbol{p} \mathrm{d} v=(\zeta \mathrm{d} v) R \omega \widehat{\boldsymbol{\varphi}}$, we will have $\mathcal{L}=\int_{\text {ring }}(\boldsymbol{r} \times \boldsymbol{p}) \mathrm{d} v \cong \int_{\text {ring }}\left(R \hat{\boldsymbol{r}}_{\|} \times \zeta R \omega \widehat{\boldsymbol{\varphi}}\right) \mathrm{d} v=m_{0} R^{2} \omega \hat{\boldsymbol{z}}$. The units of \mathcal{L} are $\left[\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{sec}\right]$. (Note that, in general, $\boldsymbol{r}=R \hat{\boldsymbol{r}}_{\|}+z \hat{\mathbf{z}}$. However, $\hat{\mathbf{z}} \times \hat{\boldsymbol{\varphi}}=-\hat{\boldsymbol{r}}_{\|}$ integrates to zero, which is why it has been dropped from the preceding equation.)
d) $\boldsymbol{m} \cong \mu_{0}(\rho R \omega)(h \delta)\left(\pi R^{2}\right) \hat{\mathbf{z}}=1 / 2 \mu_{0} Q R^{2} \omega \hat{\mathbf{z}} \quad[$ henry \cdot ampere \cdot meter $=$ weber \cdot meter $]$.

e) The magnetic dipole moment \boldsymbol{m} will be anti-parallel to the ring's angular momentum \mathcal{L} if the rotating charge Q happens to be negative.

Problem 3) a) (i) $\boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t)=\rho_{\text {free }}(\boldsymbol{r}, t)$, where $\boldsymbol{D}(\boldsymbol{r}, t)=\varepsilon_{0} \boldsymbol{E}(\boldsymbol{r}, t)+\boldsymbol{P}(\boldsymbol{r}, t)$.
The units of polarization \boldsymbol{P} are coulomb $/ \mathrm{m}^{2}$, with those of charge, coulomb, being ampere \cdot sec.
The units of displacement \boldsymbol{D} are the same as those of \boldsymbol{P}, namely, ampere $\cdot \mathrm{sec} / \mathrm{m}^{2}$.
The units of $\rho_{\text {free }}$ are coulomb $/ \mathrm{m}^{3}$, i.e., ampere $\cdot \mathrm{sec} / \mathrm{m}^{3}$.
The units of \boldsymbol{E} are volt $/ \mathrm{m}$. Invoking the Lorentz force law, $\boldsymbol{f}=q \boldsymbol{E}$, reveals the units of \boldsymbol{E} to be the same as those of force $\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{sec}^{2}\right)$ divided by the units of electrical charge (coulomb). Therefore, "volt" is $\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{3}\right)$.
The units of ε_{0} are farad $/ \mathrm{m}$. For a capacitor having capacitance C, total (positive) charge Q, and voltage V, we have $Q=C V$, with the units of Q, C, and V being coulomb, farad, and volt, respectively. Consequently, farad $=$ coulomb/volt, which makes the units of $\varepsilon_{0} \boldsymbol{E}$ equal to coulomb $/ \mathrm{m}^{2}$, consistent with those of \boldsymbol{P} and \boldsymbol{D}. Substitution for coulomb and volt now yields the units of ε_{0} in terms of the fundamental MKSA units as ampere ${ }^{2} \cdot \sec ^{4} /\left(\mathrm{kg} \cdot \mathrm{m}^{3}\right)$.

Digression. An alternative way of expressing farad in terms of the fundamental units is by way of the formula $\mathcal{E}=1 / 2 \varepsilon_{0} E^{2}$ for the energy-density of the E-field, where the units of \mathcal{E} are joule $/ \mathrm{m}^{3}$. Thus, $\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{sec}^{2} \cdot \mathrm{~m}^{3}\right)=$ $($ farad $/ \mathrm{m}) \cdot(\mathrm{volt} / \mathrm{m})^{2}$, which yields farad $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\operatorname{volt}^{2} \cdot \sec ^{2}\right)=\operatorname{ampere}^{2} \cdot \mathrm{sec}^{4} /\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$.

In Maxwell's first equation, the divergence operator divides the units of \boldsymbol{D} by the units of length, namely, meter. Thus, the left-hand side of the equation has units of coulomb $/ \mathrm{m}^{3}$, in agreement with those of $\rho_{\text {free }}$ on the right-hand side.

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)+\partial \boldsymbol{D}(\boldsymbol{r}, t) / \partial t \tag{ii}
\end{equation*}
$$

The units of $\boldsymbol{J}_{\text {free }}$ are ampere $/ \mathrm{m}^{2}$, which are the same as those of $\partial \boldsymbol{D} / \partial t$, since \boldsymbol{D} has units of coulomb $/ \mathrm{m}^{2}$, which, upon differentiation with respect to time (i.e., division of the units by sec), become coulomb $/\left(\mathrm{m}^{2} \cdot \mathrm{sec}\right)=$ ampere $/ \mathrm{m}^{2}$.
The units of \boldsymbol{H} are ampere $/ \mathrm{m}$. Considering that the curl operation $(\boldsymbol{\nabla} \times)$ involves differentiation with respect to spatial coordinates (x, y, z), which have the units of length (i.e., meter), the lefthand side of Maxwell's $2^{\text {nd }}$ equation has units of ampere $/ \mathrm{m}^{2}$, in agreement with those of the right-hand side.
b) (iii) $\oint_{\text {closed loop }} \boldsymbol{E}(\boldsymbol{r}, t) \cdot \mathrm{d} \boldsymbol{\ell}=-\frac{\mathrm{d}}{\mathrm{d} t} \int_{\text {surface }} \boldsymbol{B}(\boldsymbol{r}, t) \cdot \mathrm{d} \boldsymbol{s}$, where $\boldsymbol{B}(\boldsymbol{r}, t)=\mu_{0} \boldsymbol{H}(\boldsymbol{r}, t)+\boldsymbol{M}(\boldsymbol{r}, t)$.

This integral form of Maxwell's $3^{\text {rd }}$ equation is obtained from the corresponding differential form, namely, $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)=-\partial \boldsymbol{B}(\boldsymbol{r}, t) / \partial t$, via the application of the Stokes theorem.
On the left-hand side of the equation, the units of \boldsymbol{E} are volt/m, which, upon multiplication by the units of $\mathrm{d} \boldsymbol{\ell}$ (namely, meter) become volt $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{3}\right)$.
The units of \boldsymbol{B} and \boldsymbol{M} are weber $/ \mathrm{m}^{2}$. From the Lorentz force law $\boldsymbol{f}=q \boldsymbol{V} \times \boldsymbol{B}$, we find that weber $/ \mathrm{m}^{2}=$ newton $/($ coulomb $\cdot \mathrm{m} / \mathrm{sec})$, which yields weber $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{2}\right)$.
The units of μ_{0} are henry $/ \mathrm{m}$. Considering that the speed of light in vacuum is $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, we arrive at $($ henry $/ \mathrm{m}) \cdot($ farad $/ \mathrm{m})=(\mathrm{sec} / \mathrm{m})^{2}$, yielding henry $=\sec ^{2} /$ farad $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.{ }^{2} \cdot \mathrm{sec}^{2}\right)$. Multiplying the units of μ_{0} (i.e., henry $/ \mathrm{m}$) into those of \boldsymbol{H} (i.e., ampere $/ \mathrm{m}$) now yields the units of $\mu_{0} \boldsymbol{H}$ as $\mathrm{kg} /\left(\right.$ ampere $\cdot \mathrm{sec}^{2}$), consistent with the units of \boldsymbol{B} and \boldsymbol{M} (i.e., weber $/ \mathrm{m}^{2}$).

Digression. An alternative method of expressing henry in terms of the fundamental MKSA units is by way of the relation $\Phi=L I$ between the magnetic flux Φ (whose units are weber), the inductance L (whose units are henry), and the electric current I (whose units are ampere). Thus, henry $=$ weber/ampere $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\mathrm{ampere}^{2} \cdot \sec ^{2}\right)$.

One may also invoke the formula $\mathcal{E}=1 / 2 \mu_{0} H^{2}$ for the energy-density of the H-field, where the units of \mathcal{E} are joule $/ \mathrm{m}^{3}$. Thus, $\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\sec ^{2} \cdot \mathrm{~m}^{3}\right)=($ henry $/ \mathrm{m}) \cdot(\text { ampere } / \mathrm{m})^{2}$, which yields henry $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.{ }^{2} \cdot \mathrm{sec}^{2}\right)$.
On the right-hand side of the integral form of Maxwell's $3^{\text {rd }}$ equation, the units of \boldsymbol{B} (i.e., weber $/ \mathrm{m}^{2}$) must be multiplied into the units of the differential surface area $\mathrm{d} \boldsymbol{s}$ (i.e., m^{2}) to yield weber for the overall units of the integral. Differentiation with respect to time makes the units on the right-hand side of the equation equal to weber $/ \mathrm{sec}=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{3}\right)$, which agree with the units on the left-hand side of the equation, namely, volt $=\mathrm{kg} \cdot \mathrm{m}^{2} /\left(\right.$ ampere $\left.\cdot \mathrm{sec}^{3}\right)$.
iv) $\quad \oint_{\text {closed surface }} \boldsymbol{B}(\boldsymbol{r}, t) \cdot \mathrm{d} \boldsymbol{s}=0$, obtained from $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0$ via Gauss's theorem.

The units of \boldsymbol{B} are weber $/ \mathrm{m}^{2}$. Upon integration over a closed surface S, the units of \boldsymbol{B} are multiplied by those of the infinitesimal surface area $\mathrm{d} \boldsymbol{s}$, which has the units of area (i.e., m^{2}). Thus, the units on the left-hand side of the integral form of Maxwell's $4^{\text {th }}$ equation are weber.

Problem 4) a) The infinitesimal dipole moment formed between the positive and negative charges at y and $-y$ is $L \delta \rho(y) \mathrm{d} y$ times the separation $2 y$ between these charges. The direction of this dipole is along $\widehat{\boldsymbol{y}}$. Integrating over y (from $y=0$ to L) yields

$$
\begin{equation*}
\boldsymbol{p}=\left[\int_{0}^{L} 2 y L \delta \rho(y) \mathrm{d} y\right] \widehat{\boldsymbol{y}}=2 L \delta\left[\int_{0}^{L} y \rho(y) \mathrm{d} y\right] \widehat{\boldsymbol{y}} . \tag{1}
\end{equation*}
$$

b) For sufficiently small L, the polarization of the pair of squares is given by their dipole moment \boldsymbol{p} divided by the overall volume $2 L^{2} \delta$ of the pair; that is,

$$
\begin{equation*}
\boldsymbol{P}=\boldsymbol{p} /\left(2 L^{2} \delta\right)=L^{-1}\left[\int_{0}^{L} y \rho(y) \mathrm{d} y\right] \widehat{\boldsymbol{y}} \tag{2}
\end{equation*}
$$

c) The magnitude of $\boldsymbol{P}(t)$ is the same as that of \boldsymbol{P} in Eq.(2), but its direction is now given by $\cos (\omega t) \widehat{\boldsymbol{y}}-\sin (\omega t) \widehat{x}$. Therefore,

$$
\begin{equation*}
\boldsymbol{P}(t)=L^{-1}\left[\int_{0}^{L} y \rho(y) \mathrm{d} y\right][\cos (\omega t) \widehat{\boldsymbol{y}}-\sin (\omega t) \widehat{\boldsymbol{x}}] . \tag{3}
\end{equation*}
$$

d) As shown in figure (\mathbb{B}), at a point (x, y, z, t) on the surface of the red square at a distance $r=\sqrt{x^{2}+y^{2}}$ from the z-axis, the velocity vector will be

$$
\begin{equation*}
\boldsymbol{v}(t)=r \omega\left[-\sin \left(\omega t+90^{\circ}\right) \widehat{\boldsymbol{x}}+\cos \left(\omega t+90^{\circ}\right) \widehat{\boldsymbol{y}}\right]=-r \omega[\cos (\omega t) \widehat{\boldsymbol{x}}+\sin (\omega t) \widehat{\boldsymbol{y}}] \tag{4}
\end{equation*}
$$

The current-density at this point is, therefore, $\boldsymbol{J}(t)=\rho(r) \boldsymbol{v}(t)$. As for the blue square, the velocity at the corresponding point (i.e., at a distance r from the z-axis at time t) is the negative of $\boldsymbol{v}(t)$ of Eq.(4); however, the charge-density is also the negative of that at the corresponding point on the red square. Consequently, the current-density will be the same on the faces of both squares. Thus, at a distance r from the z-axis at time t, the current-density on both squares is

$$
\begin{equation*}
\boldsymbol{J}(t)=\rho(r) \boldsymbol{v}(t)=-r \omega \rho(r)[\cos (\omega t) \widehat{\boldsymbol{x}}+\sin (\omega t) \widehat{\boldsymbol{y}}] . \tag{5}
\end{equation*}
$$

e) The direction of the \boldsymbol{J} vector at time t is the same as that of the velocity vector $\boldsymbol{v}(t)$ given by Eq.(4); that is, $-\cos (\omega t) \hat{\boldsymbol{x}}-\sin (\omega t) \widehat{\boldsymbol{y}}$. The current passing through the surface of the red square along the direction of $\boldsymbol{J}(t)$ is $I_{\text {red }}(t)=\int_{\text {red square }} \boldsymbol{J}(t) \cdot \mathrm{d} \boldsymbol{s}=\int_{r=0}^{L} r \omega \rho(r) L \mathrm{~d} r$. Doubling this current then yields the current passing through both (red and blue) squares, as follows:

$$
\begin{equation*}
I(t)=I_{\text {red }}(t)+I_{\text {blue }}(t)=2 L \omega \int_{r=0}^{L} r \rho(r) \mathrm{d} r . \tag{6}
\end{equation*}
$$

f) For sufficiently small L, we divide the total current $I(t)$ of Eq.(6) by the surface area $2 L^{2}$ of the pair to obtain the magnitude $\bar{J}(t)$ of the average current-density. Multiplication by the unit-vector along the flow direction then yields

$$
\begin{equation*}
\overline{\boldsymbol{J}}(t)=\frac{I(t)}{2 L^{2}}[-\cos (\omega t) \widehat{\boldsymbol{x}}-\sin (\omega t) \widehat{\boldsymbol{y}}]=-(\omega / L)\left[\int_{r=0}^{L} r \rho(r) \mathrm{d} r\right][\cos (\omega t) \widehat{\boldsymbol{x}}+\sin (\omega t) \widehat{\boldsymbol{y}}] . \tag{7}
\end{equation*}
$$

g) Comparing Eqs.(3) and (7), we finally arrive at the desired identity, namely,

$$
\begin{equation*}
\boldsymbol{J}_{\text {bound }}^{(e)}=\mathrm{d} \boldsymbol{P}(t) / \mathrm{d} t=-(\omega / L)\left[\int_{y=0}^{L} y \rho(y) \mathrm{d} y\right][\sin (\omega t) \widehat{\boldsymbol{y}}+\cos (\omega t) \widehat{\boldsymbol{x}}]=\overline{\boldsymbol{J}}(t) \tag{8}
\end{equation*}
$$

