Opti 501 Final Exam Solutions 12/13/2022

Problem 1) a) The correct expression of the Poynting vector is given in (ii), since it takes the
physical E-field, which is the real part of the complex E(r,t), and cross-multiplies it into the
physical H-field, which is the real part of the complex H(r,t). In general, the complex notation
is used for mathematical convenience only; it does not represent the actual (i.e., physical) field.

The units of E (both its real and imaginary parts) are [volt/meter], while the units of H (both
its real and imaginary parts) are [ampere/meter]. The cross-product of E and H (in both their real
and complex representations) has units of [volt- ampere/mz], which equals [watt/m®] or
[joule/(sec - m?)].

b) (i) S(r,t) = Real{E(r,t) X H(r,t)} = Real{[E'(r,t) +iE"(r,t)] X [H'(r,t) + iH" (1, t)]}
=E'(r,t) xH'(r,t) —E"(r,t) X H' (1, t).
(ii) S(r,t) = Real{E(r,t)} X Real{H(r,t)} = E'(r,t) X H'(r, t).

The extraneous term in (i) is E"(r,t) X H"(r,t), which makes the purported Poynting
vector dependent on the imaginary parts of the E and H fields, which are non-physical entities.

¢) Real{E(r,t)} = Real{[E'(r) + iE" (r)][cos(wt) — isin(wt)]} = E'(r) cos(wt) + E" (r) sin(wt).
Real{H(r,t)} = Real{[H'(r) + iH" (r)][cos(wt) — isin(wt)]} = H'(r) cos(wt) + H" (r) sin(wt).
S(r,t) = Real{E(r,t)} x Real{H(r,t)} = E'(r) X H'(r) cos?(wt) + E"(r) X H"(r) sin?(wt)
+[E'(r) x H"(r) + E"(r) x H'(r)] sin(wt) cos(wt)
=W[E'(r) xH'(r) + E"(r) x H'(r)] + %[E'(r) x H'(r) — E"(r) X H" ()] cos(2wt)
+W[E'(r) x H'(r) + E"(r) x H'(r)] sin(Rwt).
d) Upon time-averaging, we find that f;"” cos(2wt) dt = 0 and f;"” sin(2wt) dt = 0. Therefore,
(S(r,t)) =%B[E'(r)x H(r)+ E"(r) x H'(r)].
e) The real part of E(r) x H*(r) is readily computed, as follows:
Real{E(r) x H*(r)} = Real{[E'(r) + iE"(r)] X [H'(+) — iH"(1)]}
=E'(r)xH'(r)+ E"(r) x H'(r).
A direct comparison with the time-averaged Poynting vector derived in part (d) now shows that

(S(r,t)) = YReal{E(r) x H*(1)}.

Problem 2) a) Within the incidence medium, we have
kO =—(w/0)z,  Ey =EyX,  Hy =k XEp/(w) = —(Eo;/Z,)y = Hyy.
Therefore,
EO(r,t) = Egi)ei(k(i)-r—wt) = EWze-iw/o)z+et) (1)

HO(r,t) = H(()i)ei(k(i)-r—(ut) = —(EV/z,)ye{@/)z+ct), )
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For the reflected plane-wave, the formulas are similar to those of the incident wave, except
that kK = (w/c)2, EX = pEY%, and H” = k® x E® /(u,0) = (pE /Z,)y. Therefore,

0x
E®(r,t) = E(()r)ei(k(r)-r—wt) = pEVgei(@/)(z=ct), 3)
HO(r,t) = ng)ei(k(r)-r—wt) = (p Eég/Zo)yei(w/c)(z_ct)_ 4)

For the transmitted beam, the generalized Snell’s law guarantees that k" = k{P = 0; the
dispersion relation then yields k® = kP2 = [(w/c)*n*(w) — (kP)? — (kP)?]%2 = +(w/)n(w)Z.
The correct sign for k(Y is minus, since the fields must decay inside the metal as z » —oo. We
also have E® = tEQ%, and HYY = k® x E® /[p,p(w)w] = —[tn(w)EY /Z,]y. Therefore,

0x
EO(rt) = TEéic)k\ei(k(t)- r-wt) = fOge-ilw/dnz+et) (5)
HO(r,t) = HY ek 7= 00 = _[rn(w)Eg) /Z,]ye 1@/ m+en), (©)
b) Inside the metallic medium, we have
P(r,t) = . (W)EQ(r,t) » J© . (r,t) = OP(r,t) /0t = —iwe, . (w)TEL e 1 (@/OMz+ctz (7)

Integrating the bound current density through the thickness of the metallic medium, we find

JOW® = [°_ Juna(r,0)dz = —iwe o (@)TEQe @ [° emi@/Om@iqz]z

bound
— _ Tlwg 112 g0, -iwts
T —i(w/c)n(w) [e(w) — 1] 1+n(w) Eoxe .
_ n?(w) -1 @  —iwts _ o [Mw) -1 6] —iwt=
= 2¢,¢C {—n(w)[1+n(w)]} Ele @ty =2 [—n(w) ] (ES/Z,)e 1tz (8)

¢) In the limit of n"(w) — o, we will have [n(w) — 1]/n(w) — 1, while the penetration depth
inside the metallic medium approaches zero. Thus, the surface current-density of Eq.(8) becomes

LM (e J SO (8) = 2(Eg,/Z,)e TR, ©)

0x

In this limit, the Fresnel reflection coefficient p approaches —1, and H —» —(E/Z,)¥.
The total H-field immediately above the surface will then be H® + H® = —2(EQ /Z Ye 19ty
Inside the metallic medium, the transmitted H-field rapidly drops to zero as n” (w) — oo, so that
the discontinuity of the H-field (immediately above and slightly below the surface) now equals
—2(E® /7,)e" 1ty This discontinuity is equal in magnitude and perpendicular in direction to
the surface-current-density J¢(t) of Eq.(9), consistent with Maxwell’s ond boundary condition.

Problem 3) a) The incident plane-wave is homogeneous and propagates along the x-axis;
therefore, k" = k{” = 0. The dispersion relation now yields k® - k¥ = (k{)? = (w/c)*p e, =
(wn,/c)?. Consequently, k® = kD% = (n,w/c)X.

0 0
b) kKV-EV =0 - kPE) +kTE) +EIE) =0 - Eg =0.

Ds , 1Dy

: i i i (nqw/c)x x (Egyy + Eg; 2) NN Do
¢) kO x EY = wu,u,H® - H = #Oﬂaoj P = eoeo/ Uolta (Eqy2 — E)9).

d) k;(ct) = k;(ci) = naa)/c; k}(}t) — kj(,i) =0.
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0
&) KK = (k)2 + JT + (k) = (w/Vhye, — K = £[(m,0/c)? = (k)]
5 KO = 21,0/ = (1,001 = £(w/nE =12 = (/) /lng, — e

The + sign in the above expression of k(Y indicates that, in principle, both signs are viable.
However, since the transmittance medium is taken to be semi-infinite, the resident plane-wave’s
exponential factor exp[i(k® - r — wt)] = exp(—k{z) exp[i(kPx + k{’y — wt)] must decay away
from the interface. The sign of the (generally complex) square root in the above expression of
kY must be chosen such that exp(—k{Pz) - 0 as z » —oo. We thus find

k(t) = ((A)/C)(na,x\ + Upép — l’l'agai)' (1)

Note that k? of the transmitted beam is not directly related to kS of the incident beam, the
latter being given by k= +[(n,e/c)? — (K0)2]% = 0

f) Continuity of Ey at the interfacial xy-plane yields E{;, = E{; = 0 and E{) = E{».
g Doy =Dy, - a5k =&k, > E) = (e/8)E,.
h) In the absence of surface currents, the continuity of H| at the interfacial xy-plane yields

H(Efc) = H(EQ =0 and H(E;) = H(gljz =7V goga/ﬂoﬂa E(glz) = 7 ga/ﬂa E(glz)/ZO

1) Continuity of B, at the interfacial xy-plane yields BO(? = BSZ), therefore,

HoboHS) = tottaHE = HE) = (a/ )\ €0Eal Mokl By = Mot/ HEESD [ Zy = 1 ES [ (Zo1ty).

All in all, the transmitted E and H field-amplitudes are seen to be

EP = EQY + (£,/8,)Eqy 2. )
ZHY = —\[e,/u, B,y + (n,/11,)Esy) 2. 3)

In what follows, we verify that the transmitted plane-wave violates at least one of Maxwell’s
equations.

1) k® - Dgt) = (w/c)(na',x\ + .\ UpEp — l’taga?) : gogb[E(l)y + (&, /Eb)E(glz)A]
= £,80\hpEy — Ha€a(w/C)EY # 0, (violation occurs for p-polarized light).
11) k(t) X H(()t) = (a)/c)(naic\ + vV UpEp — Magaz) [ V € /I’la E(Elz)y + (Tl /.u'b)E(l) Z]/ZO

= 08,0 [ (UpEn/Bata) — 1 ES) ® — (Ua/ ) ELY — Esy2].

The above expression differs from wD(t) —we EE, ® in both its x and y components.
The violation of this 2" of Maxwell’s equations occurs for p- as well as s-polarized light.

= = (/)| VHper — HataEoy X + na(ea/eb)Eg‘; —-n E%]

The above expression differs from wa)t) = wi U, H f)t) in both its x and y components. The
violation of this 3™ of Maxwell’s equations occurs for p- as well as s-polarized light.

iv) k® - BY = (/) (N + 1oy — HataZ) " Hobty [V €a/ta Ey) Y + (No/ 1) ES) 2]/ Z,
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= (nyw/c®)\/upe, — uaeaEéi; # 0, (violation occurs for s-polarized light).

Thus, under no circumstances will it be possible to have an incident plane-wave at grazing
incidence without the corresponding reflected wave. The Fresnel reflection and transmission
coefficients confirm this conclusion since, at grazing incidence, p, = p, = —1 and 7, = 7, = 0.
The fact that the reflection coefficients are equal to —1 indicates that, at grazing incidence, the
incident and reflected beams cancel each other out.
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