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Opti 501 Final Exam Solutions 12/13/2022 

Problem 1) a) The correct expression of the Poynting vector is given in (ii), since it takes the 
physical 𝐸𝐸-field, which is the real part of the complex 𝑬𝑬(𝑟𝑟, 𝑡𝑡), and cross-multiplies it into the 
physical 𝐻𝐻-field, which is the real part of the complex 𝑯𝑯(𝒓𝒓, 𝑡𝑡). In general, the complex notation 
is used for mathematical convenience only; it does not represent the actual (i.e., physical) field. 

The units of 𝑬𝑬 (both its real and imaginary parts) are [volt/meter], while the units of 𝑯𝑯 (both 
its real and imaginary parts) are [ampere/meter]. The cross-product of 𝑬𝑬 and 𝑯𝑯 (in both their real 
and complex representations) has units of [volt ∙ ampere/m2], which equals [watt/m2] or 
[joule/(sec ∙ m2)]. 

b) (i) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)} = Real{[𝑬𝑬′(𝒓𝒓, 𝑡𝑡) + i𝑬𝑬″(𝒓𝒓, 𝑡𝑡)] × [𝑯𝑯′(𝒓𝒓, 𝑡𝑡) + i𝑯𝑯″(𝒓𝒓, 𝑡𝑡)]} 

 = 𝑬𝑬′(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯′(𝒓𝒓, 𝑡𝑡) − 𝑬𝑬″(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯″(𝒓𝒓, 𝑡𝑡). 

 (ii) 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡)} × Real{𝑯𝑯(𝒓𝒓, 𝑡𝑡)} = 𝑬𝑬′(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯′(𝒓𝒓, 𝑡𝑡). 

The extraneous term in (i) is 𝑬𝑬″(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯″(𝒓𝒓, 𝑡𝑡), which makes the purported Poynting 
vector dependent on the imaginary parts of the 𝑬𝑬 and 𝑯𝑯 fields, which are non-physical entities. 

c) Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡)} = Real{[𝑬𝑬′(𝒓𝒓) + i𝑬𝑬″(𝒓𝒓)][cos(𝜔𝜔𝑡𝑡) − i sin(𝜔𝜔𝑡𝑡)]} = 𝑬𝑬′(𝒓𝒓) cos(𝜔𝜔𝑡𝑡) + 𝑬𝑬″(𝒓𝒓) sin(𝜔𝜔𝑡𝑡). 

 Real{𝑯𝑯(𝒓𝒓, 𝑡𝑡)} = Real{[𝑯𝑯′(𝒓𝒓) + i𝑯𝑯″(𝒓𝒓)][cos(𝜔𝜔𝑡𝑡) − i sin(𝜔𝜔𝑡𝑡)]} = 𝑯𝑯′(𝒓𝒓) cos(𝜔𝜔𝑡𝑡) + 𝑯𝑯″(𝒓𝒓) sin(𝜔𝜔𝑡𝑡). 

 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = Real{𝑬𝑬(𝒓𝒓, 𝑡𝑡)} × Real{𝑯𝑯(𝒓𝒓, 𝑡𝑡)} = 𝑬𝑬′(𝒓𝒓) ×𝑯𝑯′(𝒓𝒓) cos2(𝜔𝜔𝑡𝑡) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓) sin2(𝜔𝜔𝑡𝑡) 

 +[𝑬𝑬′(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓)] sin(𝜔𝜔𝑡𝑡) cos(𝜔𝜔𝑡𝑡) 

 = ½[𝑬𝑬′(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓)] + ½[𝑬𝑬′(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓)− 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓)] cos(2𝜔𝜔𝑡𝑡) 

 +½[𝑬𝑬′(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓)] sin(2𝜔𝜔𝑡𝑡). 

d) Upon time-averaging, we find that ∫ cos(2𝜔𝜔𝑡𝑡) d𝑡𝑡𝑡𝑡0+𝑇𝑇

𝑡𝑡0
= 0 and ∫ sin(2𝜔𝜔𝑡𝑡) d𝑡𝑡𝑡𝑡0+𝑇𝑇

𝑡𝑡0
= 0. Therefore, 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½[𝑬𝑬′(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓)]. 

e) The real part of 𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓) is readily computed, as follows: 

 Real{𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)} = Real{[𝑬𝑬′(𝒓𝒓) + i𝑬𝑬″(𝒓𝒓)] × [𝑯𝑯′(𝒓𝒓) − i𝑯𝑯″(𝒓𝒓)]} 

 = 𝑬𝑬′(𝒓𝒓) × 𝑯𝑯′(𝒓𝒓) + 𝑬𝑬″(𝒓𝒓) × 𝑯𝑯″(𝒓𝒓). 
A direct comparison with the time-averaged Poynting vector derived in part (d) now shows that 

 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Real{𝑬𝑬(𝒓𝒓) × 𝑯𝑯∗(𝒓𝒓)}. 
 
Problem 2) a) Within the incidence medium, we have 

 𝒌𝒌(i) = −(𝜔𝜔 𝑐𝑐⁄ )𝒛𝒛�, 𝑬𝑬0
(i) = 𝐸𝐸0𝑥𝑥

(i)𝒙𝒙�, 𝑯𝑯0
(i) = 𝒌𝒌(i) × 𝑬𝑬0

(i) (𝜇𝜇0𝜔𝜔)⁄ = −(𝐸𝐸0𝑥𝑥
(i) 𝑍𝑍0⁄ )𝒚𝒚� = 𝐻𝐻0𝑦𝑦

(i)𝒚𝒚�. 

Therefore, 

 𝑬𝑬(i)(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0
(i)𝑒𝑒i(𝒌𝒌(i)∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = 𝐸𝐸0𝑥𝑥

(i)𝒙𝒙�𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )(𝑧𝑧+𝑐𝑐𝜔𝜔). (1) 

 𝑯𝑯(i)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(i)𝑒𝑒i(𝒌𝒌(i)∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = −(𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝒚𝒚�𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )(𝑧𝑧+𝑐𝑐𝜔𝜔). (2) 
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For the reflected plane-wave, the formulas are similar to those of the incident wave, except 
that 𝒌𝒌(r) = (𝜔𝜔 𝑐𝑐⁄ )𝒛𝒛�, 𝑬𝑬0

(r) = 𝜌𝜌𝐸𝐸0𝑥𝑥
(i)𝒙𝒙�, and 𝑯𝑯0

(r) = 𝒌𝒌(r) × 𝑬𝑬0
(r) (𝜇𝜇0𝜔𝜔)⁄ = (𝜌𝜌𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝒚𝒚�. Therefore, 

 𝑬𝑬(r)(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬0
(r)𝑒𝑒i(𝒌𝒌(r)∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = 𝜌𝜌𝐸𝐸0𝑥𝑥

(i)𝒙𝒙�𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑧𝑧−𝑐𝑐𝜔𝜔). (3) 

 𝑯𝑯(r)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(r)𝑒𝑒i(𝒌𝒌(r)∙ 𝒓𝒓 – 𝜔𝜔𝜔𝜔) = (𝜌𝜌𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝒚𝒚�𝑒𝑒i(𝜔𝜔 𝑐𝑐⁄ )(𝑧𝑧−𝑐𝑐𝜔𝜔). (4) 

For the transmitted beam, the generalized Snell’s law guarantees that 𝑘𝑘𝑥𝑥(t) = 𝑘𝑘𝑦𝑦(t) = 0; the 
dispersion relation then yields 𝒌𝒌(t) = 𝑘𝑘𝑧𝑧(t)𝒛𝒛� = [(𝜔𝜔 𝑐𝑐⁄ )2𝑛𝑛2(𝜔𝜔) − (𝑘𝑘𝑥𝑥(t))2 − (𝑘𝑘𝑦𝑦(t))2]½𝒛𝒛� = ±(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛(𝜔𝜔)𝒛𝒛�. 
The correct sign for 𝑘𝑘𝑧𝑧(t) is minus, since the fields must decay inside the metal as 𝑧𝑧 → −∞. We 
also have 𝑬𝑬0

(t) = 𝜏𝜏𝐸𝐸0𝑥𝑥
(i)𝒙𝒙�, and 𝑯𝑯0

(t) = 𝒌𝒌(t) × 𝑬𝑬0
(t) [𝜇𝜇0𝜇𝜇(𝜔𝜔)𝜔𝜔]⁄ = −[𝜏𝜏𝑛𝑛(𝜔𝜔)𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ ]𝒚𝒚�. Therefore, 

 𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) = 𝜏𝜏𝐸𝐸0𝑥𝑥
(i)𝒙𝒙�𝑒𝑒i(𝒌𝒌(t)∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = 𝜏𝜏𝐸𝐸0𝑥𝑥

(i)𝒙𝒙�𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )(𝑛𝑛𝑧𝑧+𝑐𝑐𝜔𝜔). (5) 

 𝑯𝑯(t)(𝒓𝒓, 𝑡𝑡) = 𝑯𝑯0
(t)𝑒𝑒i(𝒌𝒌(t)∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔) = −[𝜏𝜏𝑛𝑛(𝜔𝜔)𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ ]𝒚𝒚�𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )(𝑛𝑛𝑧𝑧+𝑐𝑐𝜔𝜔). (6) 

b) Inside the metallic medium, we have 

 𝑷𝑷(𝒓𝒓, 𝑡𝑡) = 𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) →  𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ = −i𝜔𝜔𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝜏𝜏𝐸𝐸0𝑥𝑥

(i)𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )(𝑛𝑛𝑧𝑧+𝑐𝑐𝜔𝜔)𝒙𝒙�. (7) 

Integrating the bound current density through the thickness of the metallic medium, we find 

 𝑱𝑱s(𝑒𝑒)(𝑡𝑡) = ∫ 𝑱𝑱bound
(𝑒𝑒) (𝒓𝒓, 𝑡𝑡)d𝑧𝑧0

−∞
= −i𝜔𝜔𝜀𝜀0𝜒𝜒𝑒𝑒(𝜔𝜔)𝜏𝜏𝐸𝐸0𝑥𝑥

(i)𝑒𝑒−i𝜔𝜔𝜔𝜔�∫ 𝑒𝑒−i(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛(𝜔𝜔)𝑧𝑧d𝑧𝑧0

−∞
�𝒙𝒙� 

 = −i𝜔𝜔𝜀𝜀0
−i(𝜔𝜔 𝑐𝑐⁄ )𝑛𝑛(𝜔𝜔)

[𝜀𝜀(𝜔𝜔) − 1] 2
1+𝑛𝑛(𝜔𝜔)𝐸𝐸0𝑥𝑥

(i)𝑒𝑒−i𝜔𝜔𝜔𝜔𝒙𝒙� 

 = 2𝜀𝜀0𝑐𝑐 �
𝑛𝑛2(𝜔𝜔) − 1

𝑛𝑛(𝜔𝜔)[1+𝑛𝑛(𝜔𝜔)]�𝐸𝐸0𝑥𝑥
(i)𝑒𝑒−i𝜔𝜔𝜔𝜔𝒙𝒙� = 2 �𝑛𝑛(𝜔𝜔) − 1

𝑛𝑛(𝜔𝜔) � �𝐸𝐸0𝑥𝑥
(i) 𝑍𝑍0⁄ �𝑒𝑒−i𝜔𝜔𝜔𝜔𝒙𝒙�. (8) 

c) In the limit of 𝑛𝑛″(𝜔𝜔) → ∞, we will have [𝑛𝑛(𝜔𝜔) − 1] 𝑛𝑛(𝜔𝜔)⁄ → 1, while the penetration depth 
inside the metallic medium approaches zero. Thus, the surface current-density of Eq.(8) becomes 

 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛″(𝜔𝜔)→∞ 𝑱𝑱s(𝑒𝑒)(𝑡𝑡) = 2(𝐸𝐸0𝑥𝑥
(i) 𝑍𝑍0⁄ )𝑒𝑒−i𝜔𝜔𝜔𝜔𝒙𝒙�. (9) 

In this limit, the Fresnel reflection coefficient 𝜌𝜌 approaches −1, and 𝑯𝑯0
(r) → −(𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝒚𝒚�. 
The total 𝐻𝐻-field immediately above the surface will then be 𝑯𝑯(i) + 𝑯𝑯(r) = −2(𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝑒𝑒−i𝜔𝜔𝜔𝜔𝒚𝒚�. 
Inside the metallic medium, the transmitted 𝐻𝐻-field rapidly drops to zero as 𝑛𝑛″(𝜔𝜔) → ∞, so that 
the discontinuity of the 𝐻𝐻-field (immediately above and slightly below the surface) now equals 
−2(𝐸𝐸0𝑥𝑥

(i) 𝑍𝑍0⁄ )𝑒𝑒−i𝜔𝜔𝜔𝜔𝒚𝒚�. This discontinuity is equal in magnitude and perpendicular in direction to 
the surface-current-density 𝑱𝑱s(𝑒𝑒)(𝑡𝑡) of Eq.(9), consistent with Maxwell’s 2nd boundary condition. 
 
Problem 3) a) The incident plane-wave is homogeneous and propagates along the 𝑥𝑥-axis; 
therefore, 𝑘𝑘𝑦𝑦(i) = 𝑘𝑘𝑧𝑧(i) = 0. The dispersion relation now yields 𝒌𝒌(i) ∙ 𝒌𝒌(i) = (𝑘𝑘𝑥𝑥(i))2 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 =
(𝜔𝜔𝑛𝑛𝑎𝑎 𝑐𝑐⁄ )2. Consequently, 𝒌𝒌(i) = 𝑘𝑘𝑥𝑥(i)𝒙𝒙� = (𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ )𝒙𝒙�.  

b) 𝒌𝒌(i) ∙ 𝑬𝑬(i) = 0    →     𝑘𝑘𝑥𝑥(i)𝐸𝐸0𝑥𝑥
(i) + 𝑘𝑘𝑦𝑦(i)𝐸𝐸0𝑦𝑦

(i) + 𝑘𝑘𝑧𝑧(i)𝐸𝐸0𝑧𝑧
(i) = 0    →     𝐸𝐸0𝑥𝑥

(i) = 0. 

c) 𝒌𝒌(i) × 𝑬𝑬0
(i) = 𝜔𝜔𝜇𝜇0𝜇𝜇𝑎𝑎𝑯𝑯0

(i)    →    𝑯𝑯0
(i) =

(𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ )𝒙𝒙� × (𝐸𝐸0𝑦𝑦
(i)𝒚𝒚� + 𝐸𝐸0𝑧𝑧

(i)𝒛𝒛�)

𝜇𝜇0𝜇𝜇𝑎𝑎𝜔𝜔
= �𝜀𝜀0𝜀𝜀𝑎𝑎 𝜇𝜇0𝜇𝜇𝑎𝑎⁄ �𝐸𝐸0𝑦𝑦

(i)𝒛𝒛� − 𝐸𝐸0𝑧𝑧
(i)𝒚𝒚��. 

d) 𝑘𝑘𝑥𝑥(t) = 𝑘𝑘𝑥𝑥(i) = 𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ ;         𝑘𝑘𝑦𝑦(t) = 𝑘𝑘𝑦𝑦(i) = 0. 

0 0 
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e) 𝒌𝒌(t) ∙ 𝒌𝒌(t) = (𝑘𝑘𝑥𝑥(t))2 + (𝑘𝑘𝑦𝑦(t))2 + (𝑘𝑘𝑧𝑧(t))2 = (𝜔𝜔 𝑐𝑐⁄ )2𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏   →    𝑘𝑘𝑧𝑧(t) = ±[(𝑛𝑛𝑏𝑏𝜔𝜔 𝑐𝑐⁄ )2 − (𝑘𝑘𝑥𝑥(t))2]½ 

 →    𝑘𝑘𝑧𝑧(t) = ±[(𝑛𝑛𝑏𝑏𝜔𝜔 𝑐𝑐⁄ )2 − (𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ )2]½ = ±(𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑏𝑏2 − 𝑛𝑛𝑎𝑎2 = ±(𝜔𝜔 𝑐𝑐⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎. 

The ± sign in the above expression of 𝑘𝑘𝑧𝑧(t) indicates that, in principle, both signs are viable. 
However, since the transmittance medium is taken to be semi-infinite, the resident plane-wave’s 
exponential factor exp[i(𝒌𝒌(t) ∙ 𝒓𝒓 − 𝜔𝜔𝑡𝑡)] = exp(−𝑘𝑘𝑧𝑧(𝑡𝑡)𝑧𝑧) exp[i(𝑘𝑘𝑥𝑥(t)𝑥𝑥 + 𝑘𝑘𝑦𝑦(t)𝑦𝑦 − 𝜔𝜔𝑡𝑡)] must decay away 
from the interface. The sign of the (generally complex) square root in the above expression of 
𝑘𝑘𝑧𝑧(t) must be chosen such that exp(−𝑘𝑘𝑧𝑧(𝑡𝑡)𝑧𝑧) → 0 as 𝑧𝑧 → −∞. We thus find 

 𝒌𝒌(t) = (𝜔𝜔 𝑐𝑐⁄ )(𝑛𝑛𝑎𝑎𝒙𝒙� + �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝒛𝒛�). (1) 

Note that 𝑘𝑘𝑧𝑧(𝑡𝑡) of the transmitted beam is not directly related to 𝑘𝑘𝑧𝑧(i) of the incident beam, the 
latter being given by 𝑘𝑘𝑧𝑧(i) = ±[(𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐⁄ )2 − (𝑘𝑘𝑥𝑥(i))2]½ = 0. 

f ) Continuity of 𝑬𝑬∥ at the interfacial 𝑥𝑥𝑦𝑦-plane yields 𝐸𝐸0𝑥𝑥
(t) = 𝐸𝐸0𝑥𝑥

(i) = 0 and 𝐸𝐸0𝑦𝑦
(t) = 𝐸𝐸0𝑦𝑦

(i). 

g) 𝐷𝐷0𝑧𝑧
(t) = 𝐷𝐷0𝑧𝑧

(i)        →        𝜀𝜀0𝜀𝜀𝑏𝑏𝐸𝐸0𝑧𝑧
(t) = 𝜀𝜀0𝜀𝜀𝑎𝑎𝐸𝐸0𝑧𝑧

(i)        →        𝐸𝐸0𝑧𝑧
(t) = (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )𝐸𝐸0𝑧𝑧

(i). 

h) In the absence of surface currents, the continuity of 𝑯𝑯∥ at the interfacial 𝑥𝑥𝑦𝑦-plane yields 
𝐻𝐻0𝑥𝑥

(t) = 𝐻𝐻0𝑥𝑥
(i) = 0   and   𝐻𝐻0𝑦𝑦

(t) = 𝐻𝐻0𝑦𝑦
(i) = −�𝜀𝜀0𝜀𝜀𝑎𝑎 𝜇𝜇0𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑧𝑧

(i) = −�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑧𝑧
(i) 𝑍𝑍0� . 

i) Continuity of 𝑩𝑩⊥ at the interfacial 𝑥𝑥𝑦𝑦-plane yields 𝐵𝐵0𝑧𝑧
(t) = 𝐵𝐵0𝑧𝑧

(i); therefore, 

 𝜇𝜇0𝜇𝜇𝑏𝑏𝐻𝐻0𝑧𝑧
(t) = 𝜇𝜇0𝜇𝜇𝑎𝑎𝐻𝐻0𝑧𝑧

(i) → 𝐻𝐻0𝑧𝑧
(t) = (𝜇𝜇𝑎𝑎 𝜇𝜇𝑏𝑏⁄ )�𝜀𝜀0𝜀𝜀𝑎𝑎 𝜇𝜇0𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑦𝑦

(i) = �𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎 𝜇𝜇𝑏𝑏2⁄ 𝐸𝐸0𝑦𝑦
(i) 𝑍𝑍0⁄ = 𝑛𝑛𝑎𝑎𝐸𝐸0𝑦𝑦

(i) (𝑍𝑍0𝜇𝜇𝑏𝑏)⁄ . 

All in all, the transmitted 𝑬𝑬 and 𝑯𝑯 field-amplitudes are seen to be 

 𝑬𝑬0
(t) = 𝐸𝐸0𝑦𝑦

(i)𝒚𝒚� + (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )𝐸𝐸0𝑧𝑧
(i)𝒛𝒛�. (2) 

 𝑍𝑍0𝑯𝑯0
(t) = −�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑧𝑧

(i)𝒚𝒚� + (𝑛𝑛𝑎𝑎 𝜇𝜇𝑏𝑏⁄ )𝐸𝐸0𝑦𝑦
(i) 𝒛𝒛�. (3) 

In what follows, we verify that the transmitted plane-wave violates at least one of Maxwell’s 
equations. 
i) 𝒌𝒌(t) ∙ 𝑫𝑫0

(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎𝒙𝒙� + �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝒛𝒛�� ∙ 𝜀𝜀0𝜀𝜀𝑏𝑏�𝐸𝐸0𝑦𝑦
(i)𝒚𝒚� + (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )𝐸𝐸0𝑧𝑧

(i)𝒛𝒛�� 

 = 𝜀𝜀0𝜀𝜀𝑎𝑎�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎(𝜔𝜔 𝑐𝑐⁄ )𝐸𝐸0𝑧𝑧
(i) ≠ 0, (violation occurs for 𝑝𝑝-polarized light). 

ii) 𝒌𝒌(t) × 𝑯𝑯0
(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎𝒙𝒙� + �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝒛𝒛�� × �−�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑧𝑧

(i)𝒚𝒚� + (𝑛𝑛𝑎𝑎 𝜇𝜇𝑏𝑏⁄ )𝐸𝐸0𝑦𝑦
(i) 𝒛𝒛�� 𝑍𝑍0�  

 = 𝜀𝜀0𝜀𝜀𝑎𝑎𝜔𝜔��(𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎⁄ ) − 1 𝐸𝐸0𝑧𝑧
(i) 𝒙𝒙� − (𝜇𝜇𝑎𝑎 𝜇𝜇𝑏𝑏⁄ )𝐸𝐸0𝑦𝑦

(i)𝒚𝒚� − 𝐸𝐸0𝑧𝑧
(i)𝒛𝒛��. 

The above expression differs from −𝜔𝜔𝑫𝑫0
(t) = −𝜔𝜔𝜀𝜀0𝜀𝜀𝑏𝑏𝑬𝑬0

(t) in both its 𝑥𝑥 and 𝑦𝑦 components. 
The violation of this 2nd of Maxwell’s equations occurs for 𝑝𝑝- as well as 𝑠𝑠-polarized light. 

iii) 𝒌𝒌(t) × 𝑬𝑬0
(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎𝒙𝒙� + �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝒛𝒛�� × �𝐸𝐸0𝑦𝑦

(i)𝒚𝒚� + (𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )𝐸𝐸0𝑧𝑧
(i)𝒛𝒛�� 

 = −(𝜔𝜔 𝑐𝑐⁄ )��𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝐸𝐸0𝑦𝑦
(i) 𝒙𝒙� + 𝑛𝑛𝑎𝑎(𝜀𝜀𝑎𝑎 𝜀𝜀𝑏𝑏⁄ )𝐸𝐸0𝑧𝑧

(i)𝒚𝒚� − 𝑛𝑛𝑎𝑎𝐸𝐸0𝑦𝑦
(i)𝒛𝒛��. 

The above expression differs from 𝜔𝜔𝑩𝑩0
(t) = 𝜔𝜔𝜇𝜇0𝜇𝜇𝑏𝑏𝑯𝑯0

(t) in both its 𝑥𝑥 and 𝑦𝑦 components. The 
violation of this 3rd of Maxwell’s equations occurs for 𝑝𝑝- as well as 𝑠𝑠-polarized light. 

iv) 𝒌𝒌(t) ∙ 𝑩𝑩0
(t) = (𝜔𝜔 𝑐𝑐⁄ )�𝑛𝑛𝑎𝑎𝒙𝒙� + �𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝒛𝒛�� ∙ 𝜇𝜇0𝜇𝜇𝑏𝑏 �−�𝜀𝜀𝑎𝑎 𝜇𝜇𝑎𝑎⁄ 𝐸𝐸0𝑧𝑧

(i)𝒚𝒚� + (𝑛𝑛𝑎𝑎 𝜇𝜇𝑏𝑏⁄ )𝐸𝐸0𝑦𝑦
(i)𝒛𝒛�� 𝑍𝑍0�  

0 
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 = (𝑛𝑛𝑎𝑎𝜔𝜔 𝑐𝑐2⁄ )�𝜇𝜇𝑏𝑏𝜀𝜀𝑏𝑏 − 𝜇𝜇𝑎𝑎𝜀𝜀𝑎𝑎𝐸𝐸0𝑦𝑦
(i) ≠ 0, (violation occurs for 𝑠𝑠-polarized light). 

Thus, under no circumstances will it be possible to have an incident plane-wave at grazing 
incidence without the corresponding reflected wave. The Fresnel reflection and transmission 
coefficients confirm this conclusion since, at grazing incidence, 𝜌𝜌𝑝𝑝 = 𝜌𝜌𝑠𝑠 = −1 and 𝜏𝜏𝑝𝑝 = 𝜏𝜏𝑠𝑠 = 0. 
The fact that the reflection coefficients are equal to −1 indicates that, at grazing incidence, the 
incident and reflected beams cancel each other out. 
 


