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Opti 501 2" Midterm Exam (11/5/2020) Time: 75 minutes

Please write your name and ID number on the first page before scanning/photographing the pages.
Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) a) The static electric point-dipole p,Z sits at the origin of coordinates at (x,y,z) =
(0,0,0). Write expressions for the corresponding polarization P(r,t) and the bound electric
charge-density pt()izm 4, t). Using words and graphs, explain how your mathematical formula for

the bound charge-density represents the physical structure of the electric dipole.

b) The static magnetic point-dipole m,Z sits at the origin of coordinates at (x,y,z) = (0,0, 0).
Write expressions for the corresponding magnetization M(r,t) and the bound electric current-
density ]l()?und (r,t). Using words and graphs, explain how your mathematical formula for the

bound current-density represents the physical structure of the magnetic dipole.

c) Find the four-dimensional Fourier transforms of péi?md and ]l()i)und obtained in parts (a) and (b).

Hint: V-V =9V, /dx + 8V, /dy + 9V, /0z.
VxV=(V,/dy —0dV,/dz)x + (0V,/0z — 0V, /dx)y + (0V,/0x — OV, /dy)Z.

Problem 2) The radiated E and H fields of an infinitely long, thin, straight wire carrying the
electric current I, cos(w,t) along the z-axis are found in the cylindrical coordinates (p, ¢, z) to be

E(r,t) = —(ulow, /D[ Jo(pw,/c) cos(wyt) + Yy (pw,/c) sin(w,t)]Z,
H(r,t) = (10w0/4c)[]1(pa)0/c) Sin(wot) - Yl(pwo/c) cos(a)ot)](’[).

It is also found that a constant current /, along the same wire produces no electric field but a
time-independent magnetic field H(r) = (I,/2mp) .

a) Show that the E and H fields of the constant current can be derived as a limiting case of the
fields produced by the oscillating current.

b) Show that the far field radiated by the oscillating current has the correct retarded term
cos[w,(t — p/c) + ¢@,], where ¢, is a constant phase. Verify that the Poynting vector in the
far field, while aligned with p, declines in inverse proportion to the distance p from the wire.

Hint: The small-argument limiting forms of the Bessel functions when x — 0 are known to be
Jn(x) ~ (xil_zl)n n =0,
Y, (x) ~ %[C’ +In(x/2)]; Euler constant € = 0.577215 ---,
Yn(x)~—@(x/2)‘"; n>1
The large-argument limiting forms of the Bessel functions when x — oo are given by
Jn(x) ~ 2/ (x) coslx — (nm/2) = (w/4)],
Y, (x) ~ 2/ (@x) sin[x — (nm/2) — (m/4)].

Other useful identities are: cos x cosy + sinx siny = cos(x — y) and sinx cosy * cosx siny = sin(x + y). Also
recall that sin(x + %m) = + cos x.
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Problem 3) Show that the Lorenz gauge V - A(r, t) +

dp(rt)
at

= 0 is a direct consequence of the

charge-current continuity equation V - J(r, t) +

Problem 4) An electrically-charged spherical shell has inner radius R,, outer radius R,, and a
uniform, time-independent charge-density p,.

a) Find the 4-dimensional Fourier transform of p(r, t).
b) Write an expression for the scalar potential ¥ (k, w). ’
¢) Find the inverse Fourier transform ¢ (7, t) of ¥ (k, w).

d) Find the E-field inside the hollow cavity (r < R,), within the wall
of the shell (R, < r < R,), and outside the sphere (r = R,).

¢) Calculate the average E-field within the wall of the shell (R, <r <R,).

f) For a sufficiently thin shell (i.e., when R, — R,), show that the average E-field within the wall
of the shell approaches one-half the E-field immediately outside the shell (i.e., at = R}).

Hint: fon sinp efl®cs¢dyp = (2/a)sina; [ xsin(Bx) dx = [sin(Bx) — Bx cos(Bx)]/B?;

joo[sin(kR) — kR cos(kR)] sin(kr) dk = {T[R3/6; r = R,
0 et nr(3R? —1r%)/12; r <R.
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