Please write your name and ID number on the first page before scanning/photographing the pages. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

2 pts Problem 1) a) The static electric point-dipole $p_{0} \hat{z}$ sits at the origin of coordinates at $(x, y, z)=$ $(0,0,0)$. Write expressions for the corresponding polarization $\boldsymbol{P}(\boldsymbol{r}, t)$ and the bound electric charge-density $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$. Using words and graphs, explain how your mathematical formula for the bound charge-density represents the physical structure of the electric dipole.
2 pts b) The static magnetic point-dipole $m_{0} \hat{z}$ sits at the origin of coordinates at $(x, y, z)=(0,0,0)$. Write expressions for the corresponding magnetization $\boldsymbol{M}(\boldsymbol{r}, t)$ and the bound electric currentdensity $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$. Using words and graphs, explain how your mathematical formula for the bound current-density represents the physical structure of the magnetic dipole.
c) Find the four-dimensional Fourier transforms of $\rho_{\text {bound }}^{(\mathrm{e})}$ and $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}$ obtained in parts (a) and (b).

Hint: $\boldsymbol{\nabla} \cdot \boldsymbol{V}=\partial V_{x} / \partial x+\partial V_{y} / \partial y+\partial V_{z} / \partial z$.

$$
\boldsymbol{\nabla} \times \boldsymbol{V}=\left(\partial V_{z} / \partial y-\partial V_{y} / \partial z\right) \widehat{\boldsymbol{x}}+\left(\partial V_{x} / \partial z-\partial V_{z} / \partial x\right) \widehat{\boldsymbol{y}}+\left(\partial V_{y} / \partial x-\partial V_{x} / \partial y\right) \hat{\mathbf{z}} .
$$

Problem 2) The radiated \boldsymbol{E} and \boldsymbol{H} fields of an infinitely long, thin, straight wire carrying the electric current $I_{0} \cos \left(\omega_{0} t\right)$ along the z-axis are found in the cylindrical coordinates (ρ, φ, z) to be

$$
\begin{gathered}
\boldsymbol{E}(\boldsymbol{r}, t)=-\left(\mu_{0} I_{0} \omega_{0} / 4\right)\left[J_{0}\left(\rho \omega_{0} / c\right) \cos \left(\omega_{0} t\right)+Y_{0}\left(\rho \omega_{0} / c\right) \sin \left(\omega_{0} t\right)\right] \hat{\mathbf{z}}, \\
\boldsymbol{H}(\boldsymbol{r}, t)=\left(I_{0} \omega_{0} / 4 c\right)\left[J_{1}\left(\rho \omega_{0} / c\right) \sin \left(\omega_{0} t\right)-Y_{1}\left(\rho \omega_{0} / c\right) \cos \left(\omega_{0} t\right)\right] \hat{\boldsymbol{\varphi}} .
\end{gathered}
$$

It is also found that a constant current I_{0} along the same wire produces no electric field but a time-independent magnetic field $\boldsymbol{H}(\boldsymbol{r})=\left(I_{0} / 2 \pi \rho\right) \widehat{\boldsymbol{\varphi}}$.
a) Show that the \boldsymbol{E} and \boldsymbol{H} fields of the constant current can be derived as a limiting case of the fields produced by the oscillating current.
3 pts b) Show that the far field radiated by the oscillating current has the correct retarded term $\cos \left[\omega_{0}(t-\rho / c)+\varphi_{0}\right]$, where φ_{0} is a constant phase. Verify that the Poynting vector in the far field, while aligned with $\widehat{\boldsymbol{\rho}}$, declines in inverse proportion to the distance ρ from the wire.

Hint: The small-argument limiting forms of the Bessel functions when $x \rightarrow 0$ are known to be

$$
\begin{array}{ll}
J_{n}(x) \sim \frac{(x / 2)^{n}}{n!} ; & n \geq 0, \\
Y_{0}(x) \sim \frac{2}{\pi}[\mathcal{C}+\ln (x / 2)] ; & \text { Euler constant } \mathcal{C}=0.577215 \cdots, \\
Y_{n}(x) \sim-\frac{(n-1)!}{\pi}(x / 2)^{-n} ; & n \geq 1 .
\end{array}
$$

The large-argument limiting forms of the Bessel functions when $x \rightarrow \infty$ are given by

$$
\begin{aligned}
J_{n}(x) & \sim \sqrt{2 /(\pi x)} \cos [x-(n \pi / 2)-(\pi / 4)], \\
Y_{n}(x) & \sim \sqrt{2 /(\pi x)} \sin [x-(n \pi / 2)-(\pi / 4)] .
\end{aligned}
$$

Other useful identities are: $\cos x \cos y+\sin x \sin y=\cos (x-y)$ and $\sin x \cos y \pm \cos x \sin y=\sin (x \pm y)$. Also recall that $\sin (x \pm 1 / 2 \pi)= \pm \cos x$.

4 pts Problem 3) Show that the Lorenz gauge $\boldsymbol{\nabla} \cdot \boldsymbol{A}(\boldsymbol{r}, t)+\frac{\partial \psi(\boldsymbol{r}, t)}{c^{2} \partial t}=0$ is a direct consequence of the charge-current continuity equation $\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r}, t)+\frac{\partial \rho(\boldsymbol{r}, t)}{\partial t}=0$.

Problem 4) An electrically-charged spherical shell has inner radius R_{1}, outer radius R_{2}, and a uniform, time-independent charge-density ρ_{0}.

2 pts a) Find the 4-dimensional Fourier transform of $\rho(\boldsymbol{r}, t)$.
1 pt
b) Write an expression for the scalar potential $\psi(\boldsymbol{k}, \omega)$.

2 pts
c) Find the inverse Fourier transform $\psi(\boldsymbol{r}, t)$ of $\psi(\boldsymbol{k}, \omega)$.
d) Find the E-field inside the hollow cavity $\left(r \leq R_{1}\right)$, within the wall
 of the shell ($R_{1} \leq r \leq R_{2}$), and outside the sphere ($r \geq R_{2}$).
$1 \mathrm{pt} \quad$ e) Calculate the average E-field within the wall of the shell $\left(R_{1} \leq r \leq R_{2}\right)$.
1 pt
f) For a sufficiently thin shell (i.e., when $R_{1} \rightarrow R_{2}$), show that the average E-field within the wall of the shell approaches one-half the E-field immediately outside the shell (i.e., at $r=R_{2}^{+}$).

Hint: $\int_{0}^{\pi} \sin \varphi e^{ \pm \mathrm{i} \alpha \cos \varphi} \mathrm{d} \varphi=(2 / \alpha) \sin \alpha ; \quad \int x \sin (\beta x) \mathrm{d} x=[\sin (\beta x)-\beta x \cos (\beta x)] / \beta^{2} ;$

$$
\int_{0}^{\infty} \frac{[\sin (k R)-k R \cos (k R)] \sin (k r)}{k^{4}} \mathrm{~d} k= \begin{cases}\pi R^{3} / 6 ; & r \geq R, \\ \pi r\left(3 R^{2}-r^{2}\right) / 12 ; & r \leq R .\end{cases}
$$

