Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

2 pts Problem 1) a) Write Maxwell's equations in their standard form in the Fourier domain. All the sources and all the fields must be expressed as functions of (\boldsymbol{k}, ω).
2 pts b) Eliminate the fields $\boldsymbol{D}(\boldsymbol{k}, \omega)$ and $\boldsymbol{B}(\boldsymbol{k}, \omega)$ from the equations, then solve the equations for $\boldsymbol{E}(\boldsymbol{k}, \omega)$ and $\boldsymbol{H}(\boldsymbol{k}, \omega)$ in terms of the sources.

2 pts c) Identify the contributions of the various sources to the \boldsymbol{E} and \boldsymbol{H} fields. For instance, identify the mathematical expression in which the free charge density appears in the formulas for the \boldsymbol{E} field and/or the \boldsymbol{H} field, and the expression for the bound magnetic current-density, etc.
Hint: The vector identity $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$ will be useful.
2 pts Problem 2) a) Find the Fourier transform of the 2 -dimensional function $f(x, y)=\operatorname{circ}(r)$, where $\operatorname{circ}(r)$ equals 1.0 when $r<1$, and 0.0 when $r>1$. Here $r=\sqrt{x^{2}+y^{2}}$ is the radial coordinate in a 2-dimensional polar coordinate system.
Hint: The Fourier transform turns out to be a function of the magnitude k of the 2 -dimensional k-vector, namely, $|\boldsymbol{k}|=\left|k_{x} \widehat{\boldsymbol{x}}+k_{y} \widehat{\boldsymbol{y}}\right|$. The Fourier kernel $\boldsymbol{k} \cdot \boldsymbol{r}$ in this 2 -dimensional problem is initially written as $k_{x} x+k_{y} y$.

$$
\int_{0}^{2 \pi} \exp (\pm \mathrm{i} \beta \cos \varphi) \mathrm{d} \varphi=2 \pi J_{0}(\beta) ; \quad \int x J_{0}(x) \mathrm{d} x=x J_{1}(x) .
$$

$J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind, orders 0 and 1 , respectively.
b) Find the Fourier transform of the scaled function $\alpha^{-2} f(x / \alpha, y / \alpha)=\alpha^{-2} \operatorname{circ}(r / \alpha)$, where α is a positive real constant.

2 pts
c) In the limit when $\alpha \rightarrow 0$, the function $\alpha^{-2} \operatorname{circ}(r / \alpha)$ approaches a 2 -dimensional δ-function that is equivalent to $\pi \delta(x) \delta(y)$. What is the (2-dimensional) Fourier transform of this δ function obtained in part (b) in the limit when $\alpha \rightarrow 0$?
Hint: The Taylor series expansion $J_{1}(x)=\frac{1}{2} x-\frac{(x / 2)^{3}}{1!2!}+\frac{(x / 2)^{5}}{2!3!}-\frac{(x / 2)^{7}}{3!4!}+\cdots$ indicates that, for small $x, J_{1}(x) \rightarrow \frac{1}{2} x$.
Problem 3) The solid sphere of radius R depicted on the right-hand side is filled with a permanently magnetized material whose magnetization distribution is specified as $\boldsymbol{M}(\boldsymbol{r}, t)=M_{0} \boldsymbol{r} / R$.

3 pts a) Find the Fourier transform $\boldsymbol{M}(\boldsymbol{k}, \omega)$ of the magnetization distribution $\boldsymbol{M}(\boldsymbol{r}, t)$.
Hint: $\int_{0}^{\pi} \sin \theta \cos \theta \exp (\pm \mathrm{i} \zeta \cos \theta) \mathrm{d} \theta= \pm 2 \mathrm{i}[\sin (\zeta)-\zeta \cos (\zeta)] / \zeta^{2}$.

$$
\int_{0}^{\zeta_{0}}\left(\zeta \sin \zeta-\zeta^{2} \cos \zeta\right) \mathrm{d} \zeta=3 \sin \zeta_{0}-3 \zeta_{0} \cos \zeta_{0}-\zeta_{0}^{2} \sin \zeta_{0}
$$

2 pts b) Considering that the bound electric current-density associated with magnetization is given by $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r}, t)=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}, t)$, determine the Fourier transform $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{k}, \omega)$ of the bound current-density inside the sphere.
$1 \mathrm{pt} \quad$ c) Show that the magnetic B-field, $\boldsymbol{B}(\boldsymbol{r}, t)$, is zero everywhere (i.e., inside as well as outside the sphere.)
$1 \mathrm{pt} \quad$ d) Find the magnetic H-field, $\boldsymbol{H}(\boldsymbol{r}, t)$, inside the sphere.
Problem 4) The solid sphere of radius R depicted on the right-hand side is filled with a permanently polarized material whose polarization distribution is specified as $\boldsymbol{P}(\boldsymbol{r}, t)=P_{0} \boldsymbol{r} / R$.

1 pt a) Find the Fourier transform $\boldsymbol{P}(\boldsymbol{k}, \omega)$ of the polarization distribution $\boldsymbol{P}(\boldsymbol{r}, t)$.

Hint: If you have already solved Problem 3(a), you may use the same result here, albeit with P_{0} substituted for M_{0}. If not, proceed to calculate the Fourier transform with the aid of
 the following integrals, then use the result in Problem 3(a) - after substituting M_{0} for P_{0}.

$$
\begin{gathered}
\int_{0}^{\pi} \sin \theta \cos \theta \exp (\pm \mathrm{i} \zeta \cos \theta) \mathrm{d} \theta= \pm 2 \mathrm{i}[\sin (\zeta)-\zeta \cos (\zeta)] / \zeta^{2} . \\
\int_{0}^{\zeta_{0}}\left(\zeta \sin \zeta-\zeta^{2} \cos \zeta\right) \mathrm{d} \zeta=3 \sin \zeta_{0}-3 \zeta_{0} \cos \zeta_{0}-\zeta_{0}^{2} \sin \zeta_{0} .
\end{gathered}
$$

$1 \mathrm{pt} \quad$ b) Considering that the bound electric charge-density associated with polarization is given by $\rho_{\text {bound }}^{(e)}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)$, determine the Fourier transform $\rho_{\text {bound }}^{(e)}(\boldsymbol{k}, \omega)$ of the bound charge-density inside the sphere.

2 pts c) In terms of $P_{0}, R, \boldsymbol{k}, \omega$, and ε_{0}, write an expression for the Fourier transform $\boldsymbol{E}(\boldsymbol{k}, \omega)$ of the E field distribution throughout the entire spacetime.

2 pts
d) Use inverse Fourier transformation to find the E-field $\boldsymbol{E}(\boldsymbol{r}, t)$ in the spacetime domain.

Hint: $\quad \int_{k=0}^{\infty} \frac{\left[(k R)^{2} \sin (k R)+3(k R) \cos (k R)-3 \sin (k R)\right][\sin (k r)-k r \cos (k r)]}{k^{4}} \mathrm{~d} k= \begin{cases}-\pi r^{3} / 2 ; & r<R, \\ -\pi r^{3} / 4 ; & r=R, \\ 0 ; & r>R .\end{cases}$

