Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.
Problem 1) A solid rectangular block of dimensions $L_{x} \times L_{y} \times L_{z}$ with a central cylindrical hole of radius R, has a uniform, timeindependent magnetization $M_{0} \hat{\mathbf{z}}$, as shown.
a) Find the E-field distribution inside as well as outside the sphere.

Problem 2) A uniformly-polarized spherical particle of radius R has the polarization distribution $\boldsymbol{P}(\boldsymbol{r}, t)=P_{0} \hat{\mathbf{z}}$ Sphere (r / R). The scalar potential for this particle is known to be

$$
\psi(\boldsymbol{r}, t)= \begin{cases}\frac{P_{0} r \cos \theta}{3 \varepsilon_{0}} ; & r \leq R \\ \frac{P_{0} R^{3} \cos \theta}{3 \varepsilon_{0} r^{2}} ; & r \geq R\end{cases}
$$

b) Determine the bound electric charge-density distribution $\rho_{\text {bound }}^{(e)}$ on the surface of the sphere.
c) Show that, at the sphere's surface, the relevant Maxwell boundary conditions are satisfied.

Problem 3) A perfectly electrically conducting can is a hollow rightcircular cylinder of radius R and length L, as shown. Inside the can, there exists a trapped electromagnetic wave, whose \boldsymbol{E} and \boldsymbol{H} fields are given by

$$
\begin{gathered}
\boldsymbol{E}(\boldsymbol{r}, t)=E_{0} J_{0}\left(\omega_{0} r_{\|} / c\right) \sin \left(\omega_{0} t\right) \hat{\mathbf{z}} \\
\boldsymbol{H}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) J_{1}\left(\omega_{0} r_{\|} / c\right) \cos \left(\omega_{0} t\right) \widehat{\boldsymbol{\phi}}
\end{gathered}
$$

Here $J_{0}(\cdot)$ and $J_{1}(\cdot)$ are Bessel functions of the first kind, orders 0 and 1 , respectively, and the position coordinates are denoted by ($r_{\|}, \phi, z$), where $r_{\|}$is the length of the radial vector $\boldsymbol{r}_{\|}=x \widehat{\boldsymbol{x}}+y \widehat{\boldsymbol{y}}$. The speed of light in
 vacuum is $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and the impedance of free space is $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$.
3 pts a) Under what circumstances will the trapped wave exist within the enclosed cylindrical cavity?

2 pts b) Find the surface electric charge-density on the interior facets of the cylinder. (Note that, in addition to the cylindrical wall, the cavity is capped with flat plates at the top and bottom.)
c) Find the surface electric current-density on all the interior surfaces of the cylindrical cavity.

1 pt
d) Confirm that the charge-current continuity equation is satisfied everywhere on the interior surfaces of the enclosed cavity.

Hint: The Bessel function identity $J_{1}(x)+x J_{1}^{\prime}(x)=x J_{0}(x)$ [Chapter 3, Eq.(41)] may be helpful.

