Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Use special functions such as $\delta(\cdot)$, Rect(\cdot), and Circ(\cdot) to describe the following physical systems.

- 1 Pt a) Thin disk of radius *R*, located in the *xy*-plane and centered at the origin of coordinates, having uniform charge distribution with surface-charge-density σ_{s0} (units = *coulomb/m*²).
- 1 Pt b) Rectangular parallelepiped (or cuboid) of length L_x , width L_y , and height L_z , centered at the origin of coordinates and uniformly filled with electric dipoles, having a constant polarization P_0 along the *x*-axis.
- 2 Pts c) Cylinder of radius *R* and height *h*, centered at the origin of coordinates, with its cylinder axis in the *z*-direction, uniformly filled with magnetic dipoles, having a magnetization that oscillates as a function of time with frequency ω_0 and amplitude M_0 (along the *z*-axis).

Problem 2) A plane electromagnetic wave traveling in free space along the *y*-axis is reflected from a perfect electrically-conducting (PEC) mirror, as shown in the figure. In the region $y \le 0$, the incident and reflected potentials in the Lorenz gauge are given by

$$\begin{split} \psi^{(\text{inc})}(\boldsymbol{r},t) &= 0, \\ \boldsymbol{A}^{(\text{inc})}(\boldsymbol{r},t) &= A_0 \hat{\boldsymbol{z}} \sin(k_0 y - \omega_0 t), \\ \psi^{(\text{ref})}(\boldsymbol{r},t) &= 0, \\ \boldsymbol{A}^{(\text{ref})}(\boldsymbol{r},t) &= A_0 \hat{\boldsymbol{z}} \sin(k_0 y + \omega_0 t), \end{split}$$

where A_0 , k_0 , and ω_0 are real-valued constants, with $k_0 = \omega_0/c$.

- 3 Pts a) Determine the electric field E(r, t) and the magnetic field H(r, t) in the region $y \le 0$.
- 2 Pts b) Use Maxwell's boundary conditions at the front facet of the mirror (i.e., in the *xz*-plane at y = 0) to determine the densities of surface charge distribution $\sigma_s(x, z, t)$ and surface current distribution $J_s(x, z, t)$ at the mirror surface.
- 3 Pts c) The sheet of current induced at the front facet of the mirror must radiate both forward- and backward-propagating plane-waves in accordance with Example 10, Chapter 4. Considering that no light reaches inside the shadow of the PEC mirror (i.e., the region $y \ge 0$ remains dark), explain what happens to the plane-wave that is radiated into $y \ge 0$ by the oscillating surface current $J_s(x, z, t)$.

Problem 3) A plane-wave in free space is specified in the Lorenz gauge by its scalar potential $\psi(\mathbf{r},t) = \psi_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$ and its vector potential $A(\mathbf{r},t) = A_0 \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$.

- 2 Pts a) Specify the relation among ψ_0 , A_0 , k, and ω , considering that the potentials satisfy the Lorenz gauge.
- 2 Pts b) In terms of ψ_0 , A_0 , k, and ω , specify the electric field $E(\mathbf{r}, t)$ and the magnetic field $B(\mathbf{r}, t)$ associated with the above plane-wave.
- 3 Pts c) Considering that, in free space, $\rho_{\text{free}}(\mathbf{r},t) = 0$, $J_{\text{free}}(\mathbf{r},t) = 0$, $P(\mathbf{r},t) = 0$, and $M(\mathbf{r},t) = 0$, write Maxwell's equations for the above plane-wave, then explore the conditions under which all four equations are satisfied. (Hint: You will find that *k* must be related to ω .)

Problem 4) Let the electric charge-density distribution throughout the entire space and for all times be given by $\rho(\mathbf{r}, t) = \rho_0 \cos(k_0 x) \cos(\omega_0 t)$, where ρ_0 is a real-valued constant, while k_0 and ω_0 are real, positive constants.

- 2 Pts a) Use the charge-current continuity equation $\nabla \cdot J + \partial \rho / \partial t = 0$, to determine the electric current-density distribution J(r, t). (Hint: Constants of integration may be ignored.)
- 2 Pts b) Determine the scalar and vector potentials $\psi(\mathbf{r}, t)$ and $A(\mathbf{r}, t)$ in the Lorenz gauge, assuming that $k_0 \neq (\omega_0/c)$, where c is the speed of light in vacuum.
- 2 Pts c) Find the electric field E(r, t) and the magnetic field B(r, t) throughout the entire space-time.

Hint: You may find the identities $\cos x = \frac{1}{2} [\exp(ix) + \exp(-ix)]$ and $\sin x = \frac{1}{2i} [\exp(ix) - \exp(-ix)]$ useful.