Time: 75 minutes

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Use special functions such as $\delta(\cdot)$, $\operatorname{Rect}(\cdot)$, and $\operatorname{Circ}(\cdot)$ to describe the following physical systems.
$1 \mathrm{Pt} \quad$ a) Thin disk of radius R, located in the $x y$-plane and centered at the origin of coordinates, having uniform charge distribution with surface-charge-density $\sigma_{s 0}$ (units $=\operatorname{coulomb} / \mathrm{m}^{2}$).
b) Rectangular parallelepiped (or cuboid) of length L_{x}, width L_{y}, and height L_{z}, centered at the origin of coordinates and uniformly filled with electric dipoles, having a constant polarization P_{0} along the x-axis.
c) Cylinder of radius R and height h, centered at the origin of coordinates, with its cylinder axis in the z-direction, uniformly filled with magnetic dipoles, having a magnetization that oscillates as a function of time with frequency ω_{0} and amplitude M_{0} (along the z-axis).

Problem 2) A plane electromagnetic wave traveling in free space along the y-axis is reflected from a perfect electrically-conducting (PEC) mirror, as shown in the figure. In the region $y \leq 0$, the incident and reflected potentials in the Lorenz gauge are given by

$$
\begin{aligned}
& \psi^{(\mathrm{inc})}(\boldsymbol{r}, t)=0 \\
& \boldsymbol{A}^{(\mathrm{inc})}(\boldsymbol{r}, t)=A_{0} \hat{\mathbf{z}} \sin \left(k_{0} y-\omega_{0} t\right), \\
& \psi^{(\mathrm{ref})}(\boldsymbol{r}, t)=0 \\
& \boldsymbol{A}^{(\mathrm{ref})}(\boldsymbol{r}, t)=A_{0} \hat{\mathbf{z}} \sin \left(k_{0} y+\omega_{0} t\right),
\end{aligned}
$$

where A_{0}, k_{0}, and ω_{0} are real-valued constants, with $k_{0}=\omega_{0} / c$.

a) Determine the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ and the magnetic field $\boldsymbol{H}(\boldsymbol{r}, t)$ in the region $y \leq 0$.
b) Use Maxwell's boundary conditions at the front facet of the mirror (i.e., in the $x z$-plane at $y=0$) to determine the densities of surface charge distribution $\sigma_{s}(x, z, t)$ and surface current distribution $\boldsymbol{J}_{S}(x, z, t)$ at the mirror surface.
c) The sheet of current induced at the front facet of the mirror must radiate both forward- and backward-propagating plane-waves in accordance with Example 10, Chapter 4. Considering that no light reaches inside the shadow of the PEC mirror (i.e., the region $y \geq 0$ remains dark), explain what happens to the plane-wave that is radiated into $y \geq 0$ by the oscillating surface current $\boldsymbol{J}_{s}(x, z, t)$.

Problem 3) A plane-wave in free space is specified in the Lorenz gauge by its scalar potential $\psi(\boldsymbol{r}, t)=\psi_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$ and its vector potential $\boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{A}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$.
a) Specify the relation among $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$, and ω, considering that the potentials satisfy the Lorenz gauge.
b) In terms of $\psi_{0}, \boldsymbol{A}_{0}, \boldsymbol{k}$, and ω, specify the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ and the magnetic field $\boldsymbol{B}(\boldsymbol{r}, t)$ associated with the above plane-wave.
c) Considering that, in free space, $\rho_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{P}(\boldsymbol{r}, t)=0$, and $\boldsymbol{M}(\boldsymbol{r}, t)=0$, write Maxwell's equations for the above plane-wave, then explore the conditions under which all four equations are satisfied.
(Hint: You will find that k must be related to ω.)
Problem 4) Let the electric charge-density distribution throughout the entire space and for all times be given by $\rho(\boldsymbol{r}, t)=\rho_{0} \cos \left(k_{0} x\right) \cos \left(\omega_{0} t\right)$, where ρ_{0} is a real-valued constant, while k_{0} and ω_{0} are real, positive constants.
2 Pts a) Use the charge-current continuity equation $\boldsymbol{\nabla} \cdot \boldsymbol{J}+\partial \rho / \partial t=0$, to determine the electric current-density distribution $\boldsymbol{J}(\boldsymbol{r}, t)$.
(Hint: Constants of integration may be ignored.)
2 Pts
b) Determine the scalar and vector potentials $\psi(\boldsymbol{r}, t)$ and $\boldsymbol{A}(\boldsymbol{r}, t)$ in the Lorenz gauge, assuming that $k_{0} \neq\left(\omega_{0} / c\right)$, where c is the speed of light in vacuum.
2 Pts c) Find the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ and the magnetic field $\boldsymbol{B}(\boldsymbol{r}, t)$ throughout the entire space-time.
Hint: You may find the identities $\cos x=\frac{1}{2}[\exp (\mathrm{i} x)+\exp (-\mathrm{i} x)]$ and $\sin x=\frac{1}{2 \mathrm{i}}[\exp (\mathrm{i} x)-\exp (-\mathrm{i} x)]$ useful.

