Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A static magnetic point-dipole $\boldsymbol{M}(\boldsymbol{r})=m_{0} \delta(x) \delta(y) \delta(z) \hat{\mathbf{z}}$ sits at the origin of a Cartesian coordinate system.
a) Find the bound current-density $\boldsymbol{J}_{\text {bound }}^{(e)}$ associated with the magnetic point-dipole.
b) Using the formula $\boldsymbol{A}(\boldsymbol{r})=\left(\mu_{0} / 4 \pi\right) \int_{-\infty}^{\infty}\left[\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}$, find the vector potential in the space surrounding the point-dipole.
c) Determine the magnetic field $\boldsymbol{B}(\boldsymbol{r})$ of the point-dipole.

Problem 2) An infinitely-long, thin wire has a constant, uniform charge density λ_{0} [coulomb/m], and carries a constant, uniform current I_{0} [ampere] along the z-axis, as shown.

a) Use the formula $\psi(\boldsymbol{r})=\left(4 \pi \varepsilon_{0}\right)^{-1} \int_{-\infty}^{\infty}\left[\rho\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}$ to calculate the scalar potential of the wire in its surrounding space.
Hint: Assume at first that the wire extends from $-z_{0}$ to z_{0}, with z_{0} being large but finite. You will need the following integral:

$$
\int_{0}^{z_{0}} \mathrm{~d} z^{\prime} / \sqrt{\rho^{2}+z^{\prime 2}}=\left.\ln \left(z^{\prime}+\sqrt{\rho^{2}+z^{\prime 2}}\right)\right|_{0} ^{z_{0}}=\ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}^{2}}\right)-\ln \rho .
$$

b) To justify the neglect of $\ln \left(z_{0}+\sqrt{\rho^{2}+z_{0}{ }^{2}}\right)$ in the final expression of $\psi(\boldsymbol{r})$, one will have to argue that the neglected term, although infinitely large, does not contribute to the E-field. Considering that $\boldsymbol{E}(\boldsymbol{r})=-\boldsymbol{\nabla} \psi(\boldsymbol{r})$, find the contribution of the neglected term to $\boldsymbol{E}(\boldsymbol{r})$ and show that, in the limit when $z_{0} \rightarrow \infty$, this neglect is justified.
c) Use the formula $\mathbf{A}(\boldsymbol{r})=\left(\mu_{\mathrm{o}} / 4 \pi\right) \int_{-\infty}^{\infty}\left[\boldsymbol{J}\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}$ to calculate the vector potential of the wire in its surrounding space.

Problem 3) Consider Maxwell's equations for a system in which $\rho_{\text {free }}(\boldsymbol{r}, t)=0$ and $\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0$. The remaining sources of the electromagnetic field, $\boldsymbol{P}(\boldsymbol{r}, t)$ and $\boldsymbol{M}(\boldsymbol{r}, t)$, are arbitrary functions of the space-time coordinates.
2 Pts a) Eliminate \boldsymbol{E} and \boldsymbol{B} from Maxwell's equations by expressing the sources in terms of bound magnetic charge and current densities, that is, $\rho_{\text {bound }}^{(m)}$ and $\boldsymbol{J}_{\text {bound }}^{(m)}$.

2 Pts

2 Pts
2 Pts

2 Pts
b) Define a magnetic scalar potential $\psi^{(m)}(\boldsymbol{r}, t)$ and a magnetic vector potential $\boldsymbol{A}^{(m)}(\boldsymbol{r}, t)$ suitable for the Maxwell equations written in terms of $\boldsymbol{D}(\boldsymbol{r}, t)$ and $\boldsymbol{H}(\boldsymbol{r}, t)$ in part (a).
c) What is the equivalent of the Lorenz gauge for the magnetic potentials defined in part (b)?
d) In the aforementioned Lorenz-equivalent gauge, find the wave equation that relates $\psi^{(m)}(\boldsymbol{r}, t)$ to $\rho_{\text {bound }}^{(m)}(\boldsymbol{r}, t)$, and also the wave equation that relates $\boldsymbol{A}^{(m)}(\boldsymbol{r}, t)$ to $\boldsymbol{J}_{\text {bound }}^{(m)}(\boldsymbol{r}, t)$.
e) Using the analogy between the equations obtained in part (d) and the standard wave equation, express the solutions $\psi^{(m)}(\boldsymbol{r}, t)$ and $\boldsymbol{A}^{(m)}(\boldsymbol{r}, t)$ as integrals over $\rho_{\text {bound }}^{(m)}(\boldsymbol{r}, t)$ and $\boldsymbol{J}_{\text {bound }}^{(m)}(\boldsymbol{r}, t)$.

