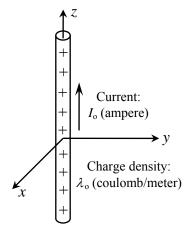
Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A static magnetic point-dipole $M(\mathbf{r}) = m_0 \delta(x) \delta(y) \delta(z) \hat{z}$ sits at the origin of a Cartesian coordinate system.

- 2 Pts a) Find the bound current-density $J_{\text{bound}}^{(e)}$ associated with the magnetic point-dipole.
- 3 Pts b) Using the formula $A(\mathbf{r}) = (\mu_0/4\pi) \int_{-\infty}^{\infty} [\mathbf{J}(\mathbf{r}')/|\mathbf{r}-\mathbf{r}'|] d\mathbf{r}'$, find the vector potential in the space surrounding the point-dipole.
- 3 Pts c) Determine the magnetic field B(r) of the point-dipole.

Problem 2) An infinitely-long, thin wire has a constant, uniform charge density λ_0 [coulomb/m], and carries a constant, uniform current I_0 [ampere] along the *z*-axis, as shown.



3 Pts a) Use the formula $\psi(\mathbf{r}) = (4\pi\varepsilon_0)^{-1} \int_{-\infty}^{\infty} [\rho(\mathbf{r}')/|\mathbf{r}-\mathbf{r}'|] d\mathbf{r}'$ to calculate the scalar potential of the wire in its surrounding space.

Hint: Assume at first that the wire extends from $-z_0$ to z_0 , with z_0 being large but finite. You will need the following integral:

$$\int_{0}^{z_{0}} \mathrm{d}z' / \sqrt{\rho^{2} + {z'}^{2}} = \ln(z' + \sqrt{\rho^{2} + {z'}^{2}}) \Big|_{0}^{z_{0}} = \ln(z_{0} + \sqrt{\rho^{2} + {z_{0}}^{2}}) - \ln \rho.$$

- 2 Pts b) To justify the neglect of $\ln(z_0 + \sqrt{\rho^2 + z_0^2})$ in the final expression of $\psi(\mathbf{r})$, one will have to argue that the neglected term, although infinitely large, does *not* contribute to the *E*-field. Considering that $\mathbf{E}(\mathbf{r}) = -\nabla \psi(\mathbf{r})$, find the contribution of the neglected term to $\mathbf{E}(\mathbf{r})$ and show that, in the limit when $z_0 \rightarrow \infty$, this neglect is justified.
- 2 Pts c) Use the formula $A(\mathbf{r}) = (\mu_0/4\pi) \int_{-\infty}^{\infty} [J(\mathbf{r}')/|\mathbf{r}-\mathbf{r}'|] d\mathbf{r}'$ to calculate the vector potential of the wire in its surrounding space.

Problem 3) Consider Maxwell's equations for a system in which $\rho_{\text{free}}(\mathbf{r},t)=0$ and $J_{\text{free}}(\mathbf{r},t)=0$. The remaining sources of the electromagnetic field, $P(\mathbf{r},t)$ and $M(\mathbf{r},t)$, are arbitrary functions of the space-time coordinates.

- 2 Pts a) Eliminate *E* and *B* from Maxwell's equations by expressing the sources in terms of bound magnetic charge and current densities, that is, $\rho_{\text{bound}}^{(m)}$ and $J_{\text{bound}}^{(m)}$.
- 2 Pts b) Define a magnetic scalar potential $\psi^{(m)}(\mathbf{r},t)$ and a magnetic vector potential $A^{(m)}(\mathbf{r},t)$ suitable for the Maxwell equations written in terms of $D(\mathbf{r},t)$ and $H(\mathbf{r},t)$ in part (a).
- 2 Pts c) What is the equivalent of the Lorenz gauge for the magnetic potentials defined in part (b)?
- 2 Pts d) In the aforementioned Lorenz-equivalent gauge, find the wave equation that relates $\psi^{(m)}(\mathbf{r},t)$ to $\rho_{\text{bound}}^{(m)}(\mathbf{r},t)$, and also the wave equation that relates $A^{(m)}(\mathbf{r},t)$ to $J_{\text{bound}}^{(m)}(\mathbf{r},t)$.
- 2 Pts e) Using the analogy between the equations obtained in part (d) and the standard wave equation, express the solutions $\psi^{(m)}(\mathbf{r},t)$ and $A^{(m)}(\mathbf{r},t)$ as integrals over $\rho_{\text{bound}}^{(m)}(\mathbf{r},t)$ and $J_{\text{bound}}^{(m)}(\mathbf{r},t)$.