Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

6 pts Problem 1) In cylindrical and spherical coordinate systems, the unit-vector $\widehat{\boldsymbol{\phi}}$ is related to the unit-vectors $\widehat{\boldsymbol{x}}$ and $\widehat{\boldsymbol{y}}$ of the Cartesian coordinate system as follows: $\widehat{\boldsymbol{\phi}}=-(\sin \phi) \widehat{\boldsymbol{x}}+(\cos \phi) \widehat{\boldsymbol{y}}$. In a similar way, relate $\widehat{\boldsymbol{\rho}}$ of the cylindrical system to $\widehat{\boldsymbol{x}}$ and $\widehat{\boldsymbol{y}}$. How are $\hat{\boldsymbol{r}}$ and $\widehat{\boldsymbol{\theta}}$ of the spherical system related to $\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}}$, and $\hat{\boldsymbol{z}}$? Finally, noting that $\hat{\boldsymbol{z}}$ has no component along $\widehat{\boldsymbol{\phi}}$, express $\hat{\mathbf{z}}$ in terms of the unit-vectors $\hat{\boldsymbol{r}}$ and $\widehat{\boldsymbol{\theta}}$ of the spherical coordinate system.

Problem 2) According to the Coulomb law of electrostatics, the E-field produced at a point $\boldsymbol{r}=r \hat{\boldsymbol{r}}$ by a point-charge q sitting at the origin of coordinates is $\boldsymbol{E}(\boldsymbol{r})=q \hat{\boldsymbol{r}} /\left(4 \pi \varepsilon_{0} r^{2}\right)$.

2 pts
a) Using a sphere of radius r surrounding the point charge q in conjunction with Maxwell's $1^{\text {st }}$ equation, $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }}$, derive the Coulomb law; see Fig.(a).

2 pts
b) Use an argument based on the symmetry of space to show that the E-field on the surface of the sphere cannot be tilted away from the radial direction in the manner depicted in Fig.(b).
c) In this electrostatic system, invoke Maxwell's $3^{\text {rd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r})=0$, to argue that the azimuthal tilt of the E-field shown in Fig.(b) is also incompatible with Maxwell's $3^{\text {rd }}$ equation.
(a)

(b)

5 pts Problem 3) A time-independent vector field $\boldsymbol{A}(\boldsymbol{r})$ is specified in a cylindrical coordinate system (ρ, ϕ, z), as follows:

$$
\boldsymbol{A}(\boldsymbol{r})= \begin{cases}A_{0} \rho \widehat{\boldsymbol{\phi}} ; & \rho \leq R \\ \left(A_{0} R^{2} / \rho\right) \widehat{\boldsymbol{\phi}} ; & \rho \geq R\end{cases}
$$

Here, $R>0$ and A_{0} are arbitrary real-valued constants. Find the vector field $\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})$ everywhere in space - that is, both inside and outside the infinitely-long cylinder of radius R.

Hint: The curl operator in the cylindrical (ρ, ϕ, z) coordinate system is given by

$$
\boldsymbol{\nabla} \times \boldsymbol{A}(\boldsymbol{r})=\left(\frac{1}{\rho} \frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \widehat{\boldsymbol{\rho}}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \widehat{\boldsymbol{\phi}}+\frac{1}{\rho}\left(\frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right) \hat{\boldsymbol{z}}
$$

Problem 4) A thin, uniformly-charged, spherical shell of radius R and surface-charge-density $\sigma_{s}=Q /\left(4 \pi R^{2}\right)$ is centered at the origin of the spherical (r, θ, ϕ) coordinate system. The E-field produced by this spherical charge distribution is $\boldsymbol{E}(\boldsymbol{r})=Q \hat{\boldsymbol{r}} /\left(4 \pi \varepsilon_{0} r^{2}\right)$ outside the sphere, and zero inside. A thin, straight, infinitely-long wire carrying the constant current I passes through the poles of the sphere. The time-independent magnetic field $\boldsymbol{H}(\boldsymbol{r})=(I / 2 \pi \rho) \widehat{\boldsymbol{\phi}}$ produced by the current-carrying wire circulates around the z-axis. Here, $\rho=r \sin \theta$ is the distance between the point $\boldsymbol{r}=(r, \theta, \phi)$ and the z-axis.

3 pts a) What is the energy density $\mathcal{E}(\boldsymbol{r})$ of the electromagnetic field at each and every point \boldsymbol{r} ?

3 pts
b) Find the Poynting vector $\boldsymbol{S}(\boldsymbol{r})$ throughout the entire
 space, then show that $\boldsymbol{\nabla} \cdot \boldsymbol{S}(\boldsymbol{r})=0$ everywhere except on the z-axis in the two regions above and below the spherical shell.
c) Show that the Poynting vector $\boldsymbol{S}(\boldsymbol{r})$ found in part (b) is consistent with a picture of the electromagnetic energy in which the lower part of the current-carrying wire (i.e., below the sphere) emits, while the upper part (above the sphere) absorbs the electromagnetic energy.
Hint: In the spherical (r, θ, ϕ) coordinate system, $\boldsymbol{\nabla} \cdot \boldsymbol{S}=\frac{1}{r^{2}} \frac{\partial\left(r^{2} s_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta s_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial s_{\phi}}{\partial \phi}$.

