Opti 501 1st **Midterm Exam** (9/28/2021) **Time: 75 minutes**

Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

6 pts **Problem 1**) In cylindrical and spherical coordinate systems, the unit-vector $\hat{\phi}$ is related to the unit-vectors \hat{x} and \hat{y} of the Cartesian coordinate system as follows: $\hat{\phi} = -(\sin \phi)\hat{x} + (\cos \phi)\hat{y}$. In a similar way, relate $\hat{\rho}$ of the cylindrical system to \hat{x} and \hat{y} . How are \hat{r} and $\hat{\theta}$ of the spherical system related to \hat{x} , \hat{y} , and \hat{z} ? Finally, noting that \hat{z} has no component along $\hat{\phi}$, express \hat{z} in terms of the unit-vectors \hat{r} and $\hat{\theta}$ of the spherical coordinate system.

Problem 2) According to the Coulomb law of electrostatics, the *E*-field produced at a point $r = r\hat{r}$ by a point-charge q sitting at the origin of coordinates is $E(r) = q\hat{r}/(4\pi\varepsilon_0 r^2)$.

- 2 pts a) Using a sphere of radius *r* surrounding the point charge *q* in conjunction with Maxwell's 1st equation, $\nabla \cdot D = \rho_{\text{free}}$, derive the Coulomb law; see Fig.(a).
- 2 pts b) Use an argument based on the symmetry of space to show that the *E*-field on the surface of the sphere *cannot* be tilted away from the radial direction in the manner depicted in Fig.(b).
- 2 pts c) In this electrostatic system, invoke Maxwell's 3^{rd} equation, $\nabla \times E(r) = 0$, to argue that the azimuthal tilt of the *E*-field shown in Fig.(b) is also incompatible with Maxwell's 3^{rd} equation.

5 pts **Problem 3**) A time-independent vector field A(r) is specified in a cylindrical coordinate system (ρ, ϕ, z) , as follows:

$$\boldsymbol{A}(\boldsymbol{r}) = \begin{cases} A_0 \rho \widehat{\boldsymbol{\phi}}; & \rho \leq R, \\ \\ (A_0 R^2 / \rho) \widehat{\boldsymbol{\phi}}; & \rho \geq R. \end{cases}$$

Here, R > 0 and A_0 are arbitrary real-valued constants. Find the vector field $\nabla \times A(r)$ everywhere in space — that is, both inside and outside the infinitely-long cylinder of radius R.

Hint: The curl operator in the cylindrical (ρ, ϕ, z) coordinate system is given by

$$\nabla \times A(\mathbf{r}) = \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right) \widehat{\boldsymbol{\rho}} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho}\right) \widehat{\boldsymbol{\phi}} + \frac{1}{\rho} \left(\frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi}\right) \widehat{\boldsymbol{z}}$$

Problem 4) A thin, uniformly-charged, spherical shell of radius *R* and surface-charge-density $\sigma_s = Q/(4\pi R^2)$ is centered at the origin of the spherical (r, θ, ϕ) coordinate system. The *E*-field produced by this spherical charge distribution is $E(r) = Q\hat{r}/(4\pi\varepsilon_0 r^2)$ outside the sphere, and zero inside. A thin, straight, infinitely-long wire carrying the constant current *I* passes through the poles of the sphere. The time-independent magnetic field $H(r) = (I/2\pi\rho)\hat{\phi}$ produced by the current-carrying wire circulates around the *z*-axis. Here, $\rho = r \sin \theta$ is the distance between the point $r = (r, \theta, \phi)$ and the *z*-axis.

- 3 pts a) What is the energy density $\mathcal{E}(\mathbf{r})$ of the electromagnetic field at each and every point \mathbf{r} ?
- 3 pts b) Find the Poynting vector S(r) throughout the entire space, then show that $\nabla \cdot S(r) = 0$ everywhere except on the z-axis in the two regions above and below the spherical shell.
- 2 pts c) Show that the Poynting vector S(r) found in part (b) is consistent with a picture of the electromagnetic energy in which the lower part of the current-carrying wire (i.e., below the sphere) emits, while the upper part (above the sphere) absorbs the electromagnetic energy.

Hint: In the spherical (r, θ, ϕ) coordinate system, $\nabla \cdot S = \frac{1}{r^2} \frac{\partial (r^2 s_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta s_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial s_\phi}{\partial \phi}$.