Please write your name and ID number on the first page before scanning/photographing the pages. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

5 pts Problem 1) The identity $\boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})-\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})$ holds for any pair of vector fields $\boldsymbol{A}(\boldsymbol{r}, t)$ and $\boldsymbol{B}(\boldsymbol{r}, t)$. In the present problem, you are asked to verify the above identity in the special case when the vector fields are the following plane-waves:

$$
\begin{align*}
& \boldsymbol{A}(\boldsymbol{r}, t)=\boldsymbol{A}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{a} \cdot \boldsymbol{r}-\omega_{a} t\right)\right] \tag{1}\\
& \boldsymbol{B}(\boldsymbol{r}, t)=\boldsymbol{B}_{0} \exp \left[\mathrm{i}\left(\boldsymbol{k}_{b} \cdot \boldsymbol{r}-\omega_{b} t\right)\right] \tag{2}
\end{align*}
$$

In general, $\boldsymbol{A}_{0}, \boldsymbol{B}_{0}, \boldsymbol{k}_{a}, \boldsymbol{k}_{b}$ are arbitrary complex vectors, while ω_{a}, ω_{b} are arbitrary complex numbers.

Hint: The vector identity $\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c})=\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{a})=\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})$ may be useful.
3 pts Problem 2) a) Show that the bound electric charge-density $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)$ and the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=\partial \boldsymbol{P}(\boldsymbol{r}, t) / \partial t$, which are associated with polarization $\boldsymbol{P}(\boldsymbol{r}, t)$, satisfy the charge-current continuity equation.

2 pts
b) Show that $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=0$ and $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)=\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}(\boldsymbol{r}, t)$, which are associated with magnetization $\boldsymbol{M}(\boldsymbol{r}, t)$, satisfy the charge-current continuity equation.

Problem 3) An electromagnetic wave propagates along the y-axis in the free-space region inside the hollow rectangular cavity of a waveguide of width L_{x} and height L_{z}. The walls of the cavity are made of a perfectly electrically conducting metal. The guided wave has a single frequency ω and a k-vector $\boldsymbol{k}=k_{x} \widehat{\boldsymbol{x}}+k_{y} \widehat{\boldsymbol{y}}$, with its E-field within the rectangular cavity specified as $\boldsymbol{E}(\boldsymbol{r}, t)=E_{0} \hat{\mathbf{z}} \cos \left(k_{x} x\right) \cos \left(k_{y} y-\omega t\right)$. Here E_{0}, k_{x}, k_{y}, and ω are real-valued constants.

1 pt a) Show that the E-field of the guided electromagnetic field satisfies Maxwell's first equation everywhere within the hollow cavity of the waveguide.

1 pt b) One of Maxwell's boundary conditions dictates that the tangential (or parallel) E-field at the inner surfaces of the waveguide must vanish. This condition imposes a constraint on the width L_{x} of the waveguide. Find the acceptable value(s) of L_{x} (as a function of k_{x}) that ensure the satisfaction of this boundary condition.

1 pt

2 pts

1 pt
1 pt

2 pts

2 pts
h) Show that the \boldsymbol{E} and \boldsymbol{H} fields inside the cavity satisfy Maxwell's second equation provided that $k_{x}^{2}+k_{y}^{2}=(\omega / c)^{2}$, where $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ is the speed of light in free space.
2 pts i) Verify that the surface charge and current densities obtained in parts (c) and (g) satisfy the charge-current continuity equation, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$.
2 pts j) Find the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, \boldsymbol{t})$ inside the cavity, then use it to explain (in words) how the electromagnetic energy moves forward, backward, and sideways at different points in spacetime.

Hint: In Cartesian coordinates, $\boldsymbol{\nabla} \times \boldsymbol{V}=\left(\partial V_{z} / \partial y-\partial V_{y} / \partial z\right) \widehat{\boldsymbol{x}}+\left(\partial V_{x} / \partial z-\partial V_{z} / \partial x\right) \widehat{\boldsymbol{y}}+\left(\partial V_{y} / \partial x-\partial V_{x} / \partial y\right) \hat{\mathbf{z}}$ and $\boldsymbol{\nabla} \cdot \boldsymbol{V}=\partial V_{x} / \partial x+\partial V_{y} / \partial y+\partial V_{z} / \partial z$.

