Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

⁵ pts **Problem 1**) The scalar field $\psi(\mathbf{r}, t)$ and the vector field $\mathbf{A}(\mathbf{r}, t)$ are specified in the spherical coordinate system $\mathbf{r} = (r, \theta, \varphi)$. Using the divergence and gradient operators in spherical coordinates, prove the vector identity $\nabla \cdot (\psi A) = \psi \nabla \cdot A + A \cdot \nabla \psi$.

Hint: In spherical coordinates, the divergence and gradient operators are given by

$$\boldsymbol{\nabla} \cdot \boldsymbol{V} = \frac{\partial (r^2 V_r)}{r^2 \partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta V_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial V_\varphi}{\partial \varphi},$$
$$\boldsymbol{\nabla} f = \frac{\partial f}{\partial r} \hat{\boldsymbol{r}} + \frac{\partial f}{r \partial \theta} \hat{\boldsymbol{\theta}} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \hat{\boldsymbol{\varphi}}.$$

Problem 2) A pair of infinitely large, perfectly electrically conducting (PEC) mirrors is placed parallel to the *xy*-plane at $z = \pm d/2$, as shown. In the free-space region $|z| \le d/2$, the *E*-field distribution is $\mathbf{E}(\mathbf{r},t) = E_0 \hat{\mathbf{x}} \sin(\omega z/c) \sin(\omega t)$, while the corresponding *H*-field distribution is $\mathbf{H}(\mathbf{r},t) = (E_0/Z_0)\hat{\mathbf{y}}\cos(\omega z/c)\cos(\omega t)$. The vacuum wavelength of the electromagnetic field trapped between the mirrors is $\lambda_0 = 2\pi c/\omega$, and the gap between the mirrors is an integer-multiple of the wavelength, that is, $d = n\lambda_0$, where *n* is an arbitrary positive integer.

- 6 pts a) Confirm that, in the region between the mirrors, all four equations of Maxwell are satisfied.
- 3 pts b) Show that the *E*-field at the interior surfaces of both mirrors (i.e., at $z = \pm d/2$) satisfies Maxwell's boundary conditions.
- 3 pts c) Considering that the *H*-field is also required to satisfy Maxwell's boundary conditions, find the surface current-density J_s at the interior facets of both mirrors (i.e., at $z = \pm d/2$).

Hint: In Cartesian coordinates,

$$\boldsymbol{\nabla} \cdot \boldsymbol{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z},$$
$$\boldsymbol{\nabla} \times \boldsymbol{V} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}\right) \hat{\boldsymbol{x}} + \left(\frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}\right) \hat{\boldsymbol{y}} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}\right) \hat{\boldsymbol{z}}.$$

Problem 3) Maxwell's first equation relates the electric field $E(\mathbf{r}, t)$ to the free charge-density $\rho_{\text{free}}(\mathbf{r}, t)$ and the bound charge-density $\rho_{\text{bound}}(\mathbf{r}, t) = -\nabla \cdot \mathbf{P}(\mathbf{r}, t)$. Let a complex-valued electric field $\mathbf{E} = \mathbf{E}' + i\mathbf{E}''$ satisfy Maxwell's first equation in conjunction with the complex-valued sources $\rho_{\text{free}} = \rho' + i\rho''$ and $\mathbf{P} = \mathbf{P}' + i\mathbf{P}''$, where the *E*-field as well as the source distributions are complex functions of the spacetime (\mathbf{r}, t) .

- 2 pts a) What *E*-field distribution would satisfy Maxwell's 1st equation if the sources were replaced by the complex conjugates $\rho_{\text{free}}^* = \rho' i\rho''$ and $P^* = P' iP''$ of the aforementioned sources?
- 2 pts b) What *E*-field distribution would satisfy Maxwell's 1st equation if the sources were replaced by Real(ρ_{free}) = ρ' and Real(P) = P'?
- 2 pts c) What *E*-field distribution would satisfy Maxwell's 1st equation if the sources were replaced by $Imag(\rho_{free}) = \rho''$ and $Imag(\mathbf{P}) = \mathbf{P}''$?
- 2 pts d) Generalize the statement of the problem and answer the above questions once again in the case that the specified sources are ρ_{free} , J_{free} , P, and M, the electromagnetic fields of interest are E and H, and the equations that must be simultaneously satisfied are all four of Maxwell's equations.