Please write your name and ID number on all the pages, then staple them together. Answer all the questions.
Note: Bold symbols represent vectors and vector fields.
5 pts Problem 1) The scalar field $\psi(\boldsymbol{r}, t)$ and the vector field $\boldsymbol{A}(\boldsymbol{r}, t)$ are specified in the spherical coordinate system $\boldsymbol{r}=(r, \theta, \varphi)$. Using the divergence and gradient operators in spherical coordinates, prove the vector identity $\boldsymbol{\nabla} \cdot(\psi \boldsymbol{A})=\psi \boldsymbol{\nabla} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{\nabla} \psi$.
Hint: In spherical coordinates, the divergence and gradient operators are given by

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \boldsymbol{V}=\frac{\partial\left(r^{2} V_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta V_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial V_{\varphi}}{\partial \varphi}, \\
\boldsymbol{\nabla} f=\frac{\partial f}{\partial r} \hat{\boldsymbol{r}}+\frac{\partial f}{r \partial \theta} \widehat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \widehat{\boldsymbol{\varphi}} .
\end{gathered}
$$

Problem 2) A pair of infinitely large, perfectly electrically conducting (PEC) mirrors is placed parallel to the $x y$-plane at $z= \pm d / 2$, as shown. In the free-space region $|z| \leq d / 2$, the E-field distribution is $\boldsymbol{E}(\boldsymbol{r}, t)=E_{0} \widehat{\boldsymbol{x}} \sin (\omega z / c) \sin (\omega t)$, while the corresponding H-field distribution is $\boldsymbol{H}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \widehat{\boldsymbol{y}} \cos (\omega z / c) \cos (\omega t)$. The vacuum wavelength of the electromagnetic field trapped between the mirrors is $\lambda_{0}=2 \pi c / \omega$, and the gap between the mirrors is an integermultiple of the wavelength, that is, $d=n \lambda_{0}$, where n is an arbitrary positive integer.

6 pts a) Confirm that, in the region between the mirrors, all four equations of Maxwell are satisfied.
b) Show that the E-field at the interior surfaces of both mirrors (i.e., at $z= \pm d / 2$) satisfies Maxwell's boundary conditions.

3 pts
c) Considering that the H-field is also required to satisfy Maxwell's boundary conditions, find the surface current-density J_{S} at the interior facets of both mirrors (i.e., at $z= \pm d / 2$).

Hint: In Cartesian coordinates,

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \boldsymbol{V}=\frac{\partial V_{x}}{\partial x}+\frac{\partial V_{y}}{\partial y}+\frac{\partial V_{z}}{\partial z}, \\
\boldsymbol{\nabla} \times \boldsymbol{V}=\left(\frac{\partial V_{z}}{\partial y}-\frac{\partial V_{y}}{\partial z}\right) \widehat{\boldsymbol{x}}+\left(\frac{\partial V_{x}}{\partial z}-\frac{\partial V_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial V_{x}}{\partial y}\right) \hat{\mathbf{z}} .
\end{gathered}
$$

Problem 3) Maxwell's first equation relates the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ to the free charge-density $\rho_{\text {free }}(\boldsymbol{r}, t)$ and the bound charge-density $\rho_{\text {bound }}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)$. Let a complex-valued electric field $\boldsymbol{E}=\boldsymbol{E}^{\prime}+\mathrm{i} \boldsymbol{E}^{\prime \prime}$ satisfy Maxwell's first equation in conjunction with the complexvalued sources $\rho_{\text {free }}=\rho^{\prime}+\mathrm{i} \rho^{\prime \prime}$ and $\boldsymbol{P}=\boldsymbol{P}^{\prime}+\mathrm{i} \boldsymbol{P}^{\prime \prime}$, where the E-field as well as the source distributions are complex functions of the spacetime (\boldsymbol{r}, t).

2 pts
a) What E-field distribution would satisfy Maxwell's $1^{\text {st }}$ equation if the sources were replaced by the complex conjugates $\rho_{\text {free }}^{*}=\rho^{\prime}-\mathrm{i} \rho^{\prime \prime}$ and $\boldsymbol{P}^{*}=\boldsymbol{P}^{\prime}-\mathrm{i} \boldsymbol{P}^{\prime \prime}$ of the aforementioned sources?
b) What E-field distribution would satisfy Maxwell's $1^{\text {st }}$ equation if the sources were replaced by $\operatorname{Real}\left(\rho_{\text {free }}\right)=\rho^{\prime}$ and $\operatorname{Real}(\boldsymbol{P})=\boldsymbol{P}^{\prime}$?
c) What E-field distribution would satisfy Maxwell's $1^{\text {st }}$ equation if the sources were replaced by $\operatorname{Imag}\left(\rho_{\text {free }}\right)=\rho^{\prime \prime}$ and $\operatorname{Imag}(\boldsymbol{P})=\boldsymbol{P}^{\prime \prime}$?
d) Generalize the statement of the problem and answer the above questions once again in the case that the specified sources are $\rho_{\text {free }}, \boldsymbol{J}_{\text {free }}, \boldsymbol{P}$, and \boldsymbol{M}, the electromagnetic fields of interest are \boldsymbol{E} and \boldsymbol{H}, and the equations that must be simultaneously satisfied are all four of Maxwell's equations.

