Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A circularly polarized plane-wave of frequency ω propagates in free space along the direction of the x-axis. The electric and magnetic fields of the plane-wave are specified as

$$
\begin{gathered}
\boldsymbol{E}(\boldsymbol{r}, t)=E_{0} \cos [(\omega / c) x-\omega t] \widehat{\boldsymbol{y}}+E_{0} \sin [(\omega / c) x-\omega t] \hat{\boldsymbol{z}} . \\
\boldsymbol{H}(\boldsymbol{r}, t)=\left(E_{0} / Z_{0}\right) \cos [(\omega / c) x-\omega t] \hat{\boldsymbol{z}}-\left(E_{0} / Z_{0}\right) \sin [(\omega / c) x-\omega t] \hat{\boldsymbol{y}} .
\end{gathered}
$$

In the above equations, $c=\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ is the speed of light in vacuum, while $Z_{0}=\left(\mu_{0} / \varepsilon_{0}\right)^{1 / 2}$ is the impedance of free space. Assume that $\rho_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0, \boldsymbol{P}(\boldsymbol{r}, t)=0, \boldsymbol{M}(\boldsymbol{r}, t)=0$.

5 pts a) Show that the specified \boldsymbol{E} and \boldsymbol{H} fields satisfy all four of Maxwell's equations.
3 pts b) Find the E-field energy-density, $\mathbb{E}(\boldsymbol{r}, t)=1 / 2 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}$, the H-field energy-density, $\mathbb{H}(\boldsymbol{r}, t)=$ $1 / 2 \mu_{0} \boldsymbol{H} \cdot \boldsymbol{H}$, and the Poynting vector, $\boldsymbol{S}(\boldsymbol{r}, t)=\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)$, of the plane-wave.
3 pts
c) Confirm the conservation of electromagnetic energy by demonstrating the validity of the Poynting theorem, $\boldsymbol{\nabla} \cdot \boldsymbol{S}+\partial_{t}(\mathbb{E}+\mathbb{H})=0$, as applied to the above plane-wave.

Hint: $\quad \boldsymbol{\nabla} \cdot \boldsymbol{V}=\partial_{x} V_{x}+\partial_{y} V_{y}+\partial_{z} V_{z}$.

$$
\begin{aligned}
& \boldsymbol{\nabla} \times \boldsymbol{V}=\left(\partial_{y} V_{z}-\partial_{z} V_{y}\right) \widehat{\boldsymbol{x}}+\left(\partial_{z} V_{x}-\partial_{x} V_{z}\right) \widehat{\boldsymbol{y}}+\left(\partial_{x} V_{y}-\partial_{y} V_{x}\right) \hat{\mathbf{z}} . \\
& \boldsymbol{A} \times \boldsymbol{B}=\left(A_{y} B_{z}-A_{z} B_{y}\right) \widehat{\boldsymbol{x}}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \widehat{\boldsymbol{y}}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{\mathbf{z}} .
\end{aligned}
$$

4 pts Problem 2) Shown in the figure below is a thin cylindrical shell of radius R and infinite length, having a constant uniform surface charge-density $\sigma_{s 0}$, and rotating at the constant angular velocity ω around the z-axis. Both regions inside and outside the shell are free space. Describe Maxwell's boundary conditions at the cylinder's surface.

Hint: The boundary conditions relate the tangential and perpendicular components of the fields, namely, $\boldsymbol{D}_{\perp}, \boldsymbol{B}_{\perp}, \boldsymbol{E}_{\|}$and $\boldsymbol{H}_{\|}$immediately before the surface at ($\rho=R^{-}, \varphi, z, t$) and immediately after the surface at ($\left.\rho=R^{+}, \varphi, z, t\right)$ to each other and to the surface-charge and surface-current densities $\sigma_{s}(\boldsymbol{r}, t)$ and $\boldsymbol{J}_{s}(\boldsymbol{r}, t)$.

4 pts Problem 3) A thin spherical shell of radius R has uniform surface charge-density $\sigma_{s 0}$ and rotates at constant angular velocity ω around the z-axis, as shown. The region inside as well as that outside the shell is free space. Describe Maxwell's boundary conditions at the sphere's surface.

3 pts Problem 4) a) An electrically-charged particle of charge q resides within a cavity inside a metallic host, as shown in Fig.(a) below. Show that the total electric charge induced on the walls of the cavity must equal $-q$.

3 pts b) In accordance with the above argument, when the charge q is removed from the cavity, the total charge remaining on the cavity walls must amount to zero; see Fig.(b). Show that, in the absence of the charge q inside the cavity, no charges whatsoever can exist anywhere on the cavity walls.

Hint: In electrostatic problems, Maxwell's $1^{\text {st }}$ equation $\oint_{\text {surface }} \boldsymbol{D}(\boldsymbol{r}) \cdot \mathrm{d} \boldsymbol{s}=\int_{\text {volume }} \rho_{\text {free }}(\boldsymbol{r}) \mathrm{d} v$ as well as Maxwell's $3^{\text {rd }}$ equation $\oint_{\text {loop }} \boldsymbol{E}(\boldsymbol{r}) \cdot \mathrm{d} \boldsymbol{\ell}=0$ must be simultaneously satisfied.

