Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

6 pts Problem 1) The E-field of a plane-wave propagating in free space is written as follows:

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t)= & \exp \left(\gamma t-\beta_{1} x-\beta_{2} y-\beta_{3} z\right) \\
& \times\left[\boldsymbol{A} \cos \left(\alpha_{1} x+\alpha_{2} y+\alpha_{3} z-\omega_{0} t+\varphi_{A}\right)-\boldsymbol{B} \sin \left(\alpha_{1} x+\alpha_{2} y+\alpha_{3} z-\omega_{0} t+\varphi_{B}\right)\right]
\end{aligned}
$$

In the above expression, $\boldsymbol{\alpha}=\alpha_{1} \widehat{\boldsymbol{x}}+\alpha_{2} \widehat{\boldsymbol{y}}+\alpha_{3} \hat{\boldsymbol{z}}, \boldsymbol{\beta}=\beta_{1} \widehat{\boldsymbol{x}}+\beta_{2} \widehat{\boldsymbol{y}}+\beta_{3} \hat{\boldsymbol{z}}, \boldsymbol{A}=A_{1} \widehat{\boldsymbol{x}}+A_{2} \widehat{\boldsymbol{y}}+A_{3} \hat{\boldsymbol{z}}$, and $\boldsymbol{B}=B_{1} \hat{\boldsymbol{x}}+B_{2} \hat{\boldsymbol{y}}+B_{3} \hat{\boldsymbol{z}}$ are constant real-valued vectors, whereas the parameters $\gamma, \omega_{0}, \varphi_{A}$, and φ_{B} are constant real-valued scalars. By comparing the above expression with the complex representation of the same E-field, namely, $\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Real}\left\{\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}$, identify the complex-valued $\boldsymbol{E}_{0}, \boldsymbol{k}$, and ω.

Problem 2) The static current-density $\boldsymbol{J}_{\text {free }}(\boldsymbol{r})$ resides in free space; all other sources of the electromagnetic field are absent, that is, $\rho_{\text {free }}(\boldsymbol{r}, t)=\boldsymbol{P}(\boldsymbol{r}, t)=\boldsymbol{M}(\boldsymbol{r}, t)=0$. In the (ρ, φ, z) cylindrical coordinate system, the resulting B-field is written

$$
\boldsymbol{B}(\boldsymbol{r})=B_{0}\left\{\left(\rho z / z_{0}^{2}\right) \widehat{\boldsymbol{\rho}}-\left[\left(\rho / \rho_{0}\right)^{2}-1\right] \hat{\mathbf{z}}\right\} \exp \left[-\left(\rho / \rho_{0}\right)^{2}-\left(z / z_{0}\right)^{2}\right]
$$

where B_{0}, ρ_{0}, and z_{0} are arbitrary constants.
2 pts a) Show that the above B-field satisfies Maxwell's $4^{\text {th }}$ equation, that is, $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r})=0$.
b) Use Maxwell's $2^{\text {nd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r})=\boldsymbol{J}_{\text {free }}(\boldsymbol{r})$, to determine the free current-density $\boldsymbol{J}_{\text {free }}(\boldsymbol{r})$ that has given rise to the specified $\boldsymbol{B}(\boldsymbol{r})$.
c) Show that the charge-current continuity equation is satisfied everywhere, that is, in the absence of $\rho_{\text {free }}(\boldsymbol{r}, t)$, confirm that $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {free }}(\boldsymbol{r})=0$.

Problem 3) The static charge-density $\rho_{\text {free }}(\boldsymbol{r})$ resides in free space; all other sources of the electromagnetic field are absent, that is, $\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=\boldsymbol{P}(\boldsymbol{r}, t)=\boldsymbol{M}(\boldsymbol{r}, t)=0$. In the (r, θ, φ) spherical coordinate system, the resulting E-field is written

$$
\boldsymbol{E}(\boldsymbol{r})=E_{0}\left[2\left(r / r_{0}\right) \sin \theta \hat{\boldsymbol{r}}-\left(r_{0} / r\right) \cos \theta \widehat{\boldsymbol{\theta}}\right] \exp \left[-\left(r / r_{0}\right)^{2}\right],
$$

where E_{0} and r_{0} are arbitrary constants.
a) Show that the above E-field satisfies Maxwell's $3^{\text {rd }}$ equation, that is, $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r})=0$.
b) Use Maxwell's $1^{\text {st }}$ equation, $\varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}(\boldsymbol{r})=\rho_{\text {free }}(\boldsymbol{r})$, to determine the free charge-density $\rho_{\text {free }}(\boldsymbol{r})$ that has given rise to the specified $\boldsymbol{E}(\boldsymbol{r})$.
$2 \mathrm{pts} \quad$ c) Find the total charge by integrating $\rho_{\text {free }}(\boldsymbol{r})$ over the entire space.
Hint: $\int_{0}^{\infty} x^{2} \exp \left(-x^{2}\right) \mathrm{d} x=\sqrt{\pi} / 4$;

$$
\int_{0}^{\infty} x^{4} \exp \left(-x^{2}\right) \mathrm{d} x=3 \sqrt{\pi} / 8
$$

1 pt Problem 4) a) Write Maxwell's equations in their standard differential form. Also write the standard expressions for the displacement field $\boldsymbol{D}(\boldsymbol{r}, t)$ and the magnetic induction $\boldsymbol{B}(\boldsymbol{r}, t)$ in terms of the \boldsymbol{E} and \boldsymbol{H} fields as well as the polarization $\boldsymbol{P}(\boldsymbol{r}, t)$ and magnetization $\boldsymbol{M}(\boldsymbol{r}, t)$.
2 pts b) Eliminate the \boldsymbol{E} and \boldsymbol{H} fields from Maxwell's equations, leaving only the \boldsymbol{D} and \boldsymbol{B} fields.

2 pts

2 pts
c) Explain the type of total charge-density and total current-density that appear in Maxwell's equations when they are written as in part (b). Pay particular attention to the units (i.e., dimensions) of the various entities.
d) Derive an alternative version of Poynting's theorem in which the electromagnetic energy flux is defined as $\boldsymbol{S}(\boldsymbol{r}, t)=c^{2} \boldsymbol{D}(\boldsymbol{r}, t) \times \boldsymbol{B}(\boldsymbol{r}, t)$. In accordance with this alternative form of Poynting's theorem, identify the corresponding field energy-densities and the exchange rate of electromagnetic energy with material media.

Appendix B

Vector Identities

$\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$
$\boldsymbol{A} \cdot(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \cdot \boldsymbol{B}+\boldsymbol{A} \cdot \boldsymbol{C}$
$\boldsymbol{A} \times \boldsymbol{B}=-\boldsymbol{B} \times \boldsymbol{A}$
$\boldsymbol{A} \times(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A} \times \boldsymbol{B}+\boldsymbol{A} \times \boldsymbol{C}$
$(\boldsymbol{A}+\boldsymbol{B}) \times \boldsymbol{C}=\boldsymbol{A} \times \boldsymbol{C}+\boldsymbol{B} \times \boldsymbol{C}$
$\boldsymbol{A} \cdot(\boldsymbol{B} \times \boldsymbol{C})=\boldsymbol{B} \cdot(\boldsymbol{C} \times \boldsymbol{A})=\boldsymbol{C} \cdot(\boldsymbol{A} \times \boldsymbol{B})$
$\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$
$(\boldsymbol{A} \times \boldsymbol{B}) \cdot(\boldsymbol{C} \times \boldsymbol{D})=(\boldsymbol{A} \cdot \boldsymbol{C})(\boldsymbol{B} \cdot \boldsymbol{D})-(\boldsymbol{A} \cdot \boldsymbol{D})(\boldsymbol{B} \cdot \boldsymbol{C})$
$\nabla \cdot(\nabla \times \boldsymbol{A})=0$
$\nabla \times(\nabla \psi)=0$
$\boldsymbol{\nabla} \cdot(\psi \boldsymbol{A})=(\boldsymbol{\nabla} \psi) \cdot \boldsymbol{A}+\psi \boldsymbol{\nabla} \cdot \boldsymbol{A}$
$\boldsymbol{\nabla} \times(\psi \boldsymbol{A})=(\nabla \psi) \times \boldsymbol{A}+\psi \nabla \times \boldsymbol{A}$
$\boldsymbol{\nabla} \cdot(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{A})-\boldsymbol{A} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})$
$\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A})-\boldsymbol{\nabla}^{2} \boldsymbol{A}$
$\boldsymbol{\nabla}(\boldsymbol{A} \cdot \boldsymbol{B})=(\boldsymbol{A} \cdot \boldsymbol{\nabla}) \boldsymbol{B}+(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{A}+\boldsymbol{A} \times(\boldsymbol{\nabla} \times \boldsymbol{B})+\boldsymbol{B} \times(\boldsymbol{\nabla} \times \boldsymbol{A})$
$\nabla \times(\boldsymbol{A} \times \boldsymbol{B})=\boldsymbol{A}(\boldsymbol{\nabla} \cdot \boldsymbol{B})-\boldsymbol{B}(\boldsymbol{\nabla} \cdot \boldsymbol{A})+(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{A}-(\boldsymbol{A} \cdot \boldsymbol{\nabla}) \boldsymbol{B}$

If \boldsymbol{r} is a point in 3 -dimensional Euclidean space, then
$\nabla(1 /|\boldsymbol{r}|)=-\boldsymbol{r} /|\boldsymbol{r}|^{3}$
$\nabla \cdot\left(\boldsymbol{r} /|\boldsymbol{r}|^{3}\right)=4 \pi \delta(\boldsymbol{r})$

Appendix C

Vector Operations in Cartesian, Cylindrical, and Spherical Coordinates

$\operatorname{Cartesian}(x, y, z): \quad \quad \nabla \psi=\frac{\partial \psi}{\partial x} \hat{\boldsymbol{x}}+\frac{\partial \psi}{\partial y} \hat{\boldsymbol{y}}+\frac{\partial \psi}{\partial z} \hat{\boldsymbol{z}}$

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z} \\
\nabla \times \boldsymbol{A}=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\boldsymbol{z}} \\
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
\end{gathered}
$$

Cylindrical $(\rho, \phi, z): \quad \quad \nabla \psi=\frac{\partial \psi}{\partial \rho} \hat{\rho}+\frac{\partial \psi}{\rho \partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial \psi}{\partial z} \hat{z}$
$\nabla \cdot \boldsymbol{A}=\frac{\partial\left(\rho A_{\rho}\right)}{\rho \partial \rho}+\frac{\partial A_{\phi}}{\rho \partial \phi}+\frac{\partial A_{z}}{\partial z}$
$\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\frac{\partial A_{z}}{\rho \partial \phi}-\frac{\partial A_{\phi}}{\partial z}\right) \hat{\boldsymbol{\rho}}+\left(\frac{\partial A_{\rho}}{\partial z}-\frac{\partial A_{z}}{\partial \rho}\right) \hat{\boldsymbol{\phi}}+\frac{1}{\rho}\left(\frac{\partial\left(\rho A_{\phi}\right)}{\partial \rho}-\frac{\partial A_{\rho}}{\partial \phi}\right) \hat{\boldsymbol{z}}$

$$
\nabla^{2} \psi=\frac{\partial(\rho \partial \psi / \partial \rho)}{\rho \partial \rho}+\frac{\partial^{2} \psi}{\rho^{2} \partial \phi^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}
$$

Spherical $(r, \theta, \phi): \quad \nabla \psi=\frac{\partial \psi}{\partial r} \hat{\boldsymbol{r}}+\frac{\partial \psi}{r \partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \hat{\boldsymbol{\phi}}$

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \boldsymbol{A}=\frac{\partial\left(r^{2} A_{r}\right)}{r^{2} \partial r}+\frac{1}{r \sin \theta} \frac{\partial\left(\sin \theta A_{\theta}\right)}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\
\nabla \times \boldsymbol{A}=\frac{1}{r \sin \theta}\left(\frac{\partial\left(\sin \theta A_{\phi}\right)}{\partial \theta}-\frac{\partial A_{\theta}}{\partial \phi}\right) \hat{r}+\left(\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial\left(r A_{\phi}\right)}{r \partial r}\right) \hat{\boldsymbol{\theta}}+\frac{1}{r}\left(\frac{\partial\left(r A_{\theta}\right)}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\right) \hat{\boldsymbol{\phi}} \\
\nabla^{2} \psi=\frac{\partial\left(r^{2} \partial \psi / \partial r\right)}{r^{2} \partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial(\sin \theta \partial \psi / \partial \theta)}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}} \\
{\left[\text { Note that } \frac{\partial\left(r^{2} \partial \psi / \partial r\right)}{r^{2} \partial r}=\frac{\partial^{2}(r \psi)}{r \partial r^{2}}\right]}
\end{gathered}
$$

