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Opti 501 1st Midterm Exam (10/6/2016) Time: 75 minutes 

Please write your name and ID number on all the pages, then staple them together. 
Answer all the questions. 

Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) A hollow,  electrically conducting, spherical shell of 
radius 𝑅𝑅1 and surface charge-density 𝜎𝜎1 resides within another 
hollow, electrically conducting, spherical shell of radius 𝑅𝑅2 and 
surface-charge-density 𝜎𝜎2, as shown. The two spheres are 
concentric and have relatively thin shells. 

a) Determine the charge-densities 𝜎𝜎11, 𝜎𝜎12, 𝜎𝜎21, and 𝜎𝜎22 on the 
inner and outer surfaces of each sphere. 

b) Find the electric field distribution in the various regions inside 
and outside the spheres. 

c) Assuming the total charge on one sphere is equal in magnitude and opposite in sign to the total 
charge on the other sphere, what is the capacitance 𝐶𝐶 of the pair of spheres? 

Hint: 𝐶𝐶 = 𝑄𝑄 𝑉𝑉⁄ , where ±𝑄𝑄 is the total charge on each sphere, and 𝑉𝑉 is the potential difference (or voltage) between 
the spheres. The voltage is the integral of the 𝐸𝐸-field along the radial direction from one sphere to the other. 
 
Problem 2) A hollow circular cylinder having infinite length, negligible 
thickness 𝜏𝜏, and radius 𝑅𝑅, is aligned with the 𝑧𝑧-axis and carries a constant 
surface-current-density 𝐽𝐽𝑠𝑠0𝝋𝝋� . 

a) What is the relationship between the ordinary current-density 𝑱𝑱free and a 
surface-current-density such as 𝐽𝐽𝑠𝑠0𝝋𝝋�? What are the units of 𝐽𝐽𝑠𝑠0? 

b) Use symmetry arguments to constrain the components 𝐻𝐻𝜌𝜌, 𝐻𝐻𝜑𝜑, 𝐻𝐻𝑧𝑧 of the 
magnetic field created both inside and outside the cylinder. The 
constraints may apply to the field components, but also to their 
dependence on the cylindrical coordinates 𝜌𝜌, 𝜑𝜑 and 𝑧𝑧. 

c) Use Maxwell’s equations to determine the dependence of 𝐻𝐻𝜌𝜌, 𝐻𝐻𝜑𝜑, and 
𝐻𝐻𝑧𝑧 on 𝐽𝐽𝑠𝑠0 and also on the relevant coordinate(s). 

 
Problem 3) Four friends are discussing the nature of the sources of the electromagnetic field as 
revealed to them by Maxwell’s equations. They all agree that 𝜌𝜌free(𝒓𝒓, 𝑡𝑡) and 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) are 
produced by (stationary or mobile) electrical charges. However, they vehemently disagree as to 
the nature of the remaining two sources, namely, polarization 𝑷𝑷(𝒓𝒓, 𝑡𝑡) and magnetization 𝑴𝑴(𝒓𝒓, 𝑡𝑡). 

Alice: Polarization gives rise to electric charge-density −𝜵𝜵 ∙ 𝑷𝑷 and electric current-density 
𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ , whereas magnetization has no electric charge-density associated with it, only electric 
current-density, which is given by 𝜇𝜇o−1𝜵𝜵 × 𝑴𝑴. 
Brian: I couldn’t disagree more. There are no electric charges, nor electric currents, associated 
with either 𝑷𝑷 or 𝑴𝑴. Everything stems from pairs of magnetic charges (i.e., magnetic monopoles). 
Magnetization gives rise to the magnetic charge-density −𝜵𝜵 ∙ 𝑴𝑴 and magnetic current-density 
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𝜕𝜕𝑴𝑴 𝜕𝜕𝑡𝑡⁄ , whereas polarization has no magnetic charge-density associated with it, only magnetic 
current-density, which is given by −𝜀𝜀o−1𝜵𝜵 × 𝑷𝑷. 
Carol: I agree with Alice about polarization, but I think Brian has it right when it comes to 
magnetization. 

David: I am afraid I must disagree with Carol. In my opinion, Alice is correct about 
magnetization, while Brian has the right idea about polarization. 

You be the judge. Who is right here and why? (You must explain your reasoning and summon 
support for your arguments directly and exclusively from Maxwell’s equations.) 
 
Problem 4) A light bullet carrying energy ℰ0 and electromagnetic momentum 𝒑𝒑EM = (ℰ0 𝑐𝑐⁄ )𝒛𝒛�  
travels in free space along the 𝑧𝑧-axis. The light pulse (i.e., the bullet) is reflected from a perfect 
reflector at normal incidence, as shown below. The reflector’s mass is 𝑀𝑀 and its initial velocity 
(i.e., velocity before interacting with the light pulse) is 𝑉𝑉0𝒛𝒛�. After reflection, the light pulse has 
energy ℰ1 and electromagnetic momentum 𝒑𝒑EM = −(ℰ1 𝑐𝑐⁄ )𝒛𝒛�, while the mirror’s velocity has 
changed to 𝑉𝑉1𝒛𝒛�. 
 
 
 
 
 
 
 
 
 
 

a) Write the relativistic equations for the conservation of the overall energy and linear 
momentum of the system. 

b) Write the non-relativistic equations for the conservation of the overall energy and linear 
momentum of the system. (In this case the mirror’s energy is its kinetic energy ℰ𝐾𝐾 = ½𝑀𝑀𝑉𝑉2.) 

c) Solve the non-relativistic equations of part (b) to obtain expressions for ℰ1 and 𝑉𝑉1 in terms of 
ℰ0, 𝑉𝑉0, 𝑀𝑀, and 𝑐𝑐. 

d) Considering that, in the non-relativistic regime, ℰ0 ≪ 𝑀𝑀𝑐𝑐2 and 𝑉𝑉0 ≪ 𝑐𝑐, use the approximation 
√1 + 𝜀𝜀 ≅ 1 + ½𝜀𝜀 −⅛𝜀𝜀2 to arrive at simple (approximate) formulas for 𝑉𝑉1 and ℰ1. 

Hint: You may define 𝛼𝛼0 = ℰ0 𝑀𝑀𝑐𝑐2⁄ , 𝛼𝛼1 = ℰ1 𝑀𝑀𝑐𝑐2⁄ , 𝛽𝛽0 = 𝑉𝑉0 𝑐𝑐⁄  and 𝛽𝛽1 = 𝑉𝑉1 𝑐𝑐⁄  to simplify algebraic manipulations. 
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