Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.
Problem 1) A spherical shell of radius R has a constant, uniform surface-charge-density σ_{s} [coulomb $/ \mathrm{m}^{2}$]. The shell rotates around the z-axis at a constant angular velocity ω.
a) Write an expression for the surface-current-density $\boldsymbol{J}_{s}(\rho, \theta, \phi, t)$ in the spherical coordinate system and specify the units of \boldsymbol{J}_{s}.
b) Compute the divergence of \boldsymbol{J}_{S} and confirm that the charge-current continuity equation $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{s}+\partial \sigma_{s} / \partial t=0$ is satisfied.

Problem 2) A vector plane-wave propagating in free space has the following E-field amplitude:

$$
\boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Real}\left\{\boldsymbol{E}_{0} \exp [i(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]\right\}
$$

Here ω is a real-valued scalar parameter, while $\boldsymbol{k}=\boldsymbol{k}^{\prime}+i \boldsymbol{k}^{\prime \prime}$ and $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+i \boldsymbol{E}_{0}^{\prime \prime}$ are complexvalued vectors.
a) What is the oscillation frequency of the E-field (when considered as a function of time)?
d) Which parameter(s) of the plane-wave specify its state of polarization? Under what circumstances is the plane-wave linearly polarized? When is the beam circularly polarized?

Problem 3) An infinitely long, thin wire carries the constant current I_{0} along the z-axis. Using symmetry arguments in conjunction with Maxwell's equations, explain why the H-field produced by the wire cannot have a component along the radial direction. In other words, explain why $H_{\rho}(\rho, \phi, z)$ is zero everywhere in the
 space surrounding the wire.

3 Pts Problem 4) a) The polarization of a thin sheet of material located in the $x z$-plane is given by

$$
\boldsymbol{P}(\boldsymbol{r}, t)=P_{0} \hat{\mathbf{z}} \delta(y) \sin (\kappa z-\omega t) .
$$

Here P_{0}, κ and ω are real-valued constants, and $\delta(\cdot)$ is Dirac's delta function. Find the densities of bound electric charge $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$ and bound electric current $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$ within the sheet. Show that the charge-current continuity equation is satisfied.

2 Pts
b) The magnetization of a thin sheet of material located in the $x z$-plane is given by

$$
\boldsymbol{M}(\boldsymbol{r}, t)=M_{0} \widehat{\boldsymbol{y}} \delta(y) \cos (\kappa z-\omega t)
$$

As before, M_{0}, κ and ω are real-valued constants, and $\delta(\cdot)$ is Dirac's delta function. Find the densities of bound electric charge $\rho_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$ and bound electric current $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}(\boldsymbol{r}, t)$ within the sheet. Show that the charge-current continuity equation is satisfied.

4 Pts Problem 5) An infinitely long, thin wire has a uniform charge-density λ_{0} [coulomb/meter]. The wire is centered on the z-axis and surrounded by a cylindrical shell of an electrically conducting material. The shell is infinitely long in the z-direction, is centered on the z-axis, and its inner and outer radii are R_{1} and R_{2}, respectively. Assuming that the cylindrical shell is not charged at the outset, and considering that the E-field everywhere inside the metallic conductor must vanish, find the surface charge densities σ_{1} and σ_{2} at the inner and outer surfaces of the cylindrical shell.

