Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) Suppose a homogeneous planewave (i.e., one whose k-vector is real) arrives from the free space onto the flat and polished surface of a linear, isotropic, and homogeneous (LIH) medium, as shown. Let the interface between the LIH medium and the medium of incidence (i.e., free space in the present case) be the $x y$-plane at $z=0$. Using brief but precise statements, define the following properties of the optical material, characteristics of the plane-wave, and specific features of the optical system.

3 pts a) When is an optical medium considered to be linear, isotropic, and homogeneous (LIH)?
2 pts b) What is the plane of incidence? Does this definition hold for a normally-incident plane-wave?
$2 \mathrm{pts} \quad$ c) When is the incident plane-wave said to be p-polarized? When is it said to be s-polarized?
2 pts d) Denoting the components of the incident E-field by $E_{p}=\left|E_{p}\right| e^{\mathrm{i} \varphi_{p}}$ and $E_{s}=\left|E_{s}\right| e^{\mathrm{i} \varphi_{s}}$, describe conditions under which the incident plane-wave can be said to be linearly polarized, or circularly polarized, or elliptically polarized.

Problem 2) Inside a linear, isotropic, and homogenous medium, the complex E-field of a plane electromagnetic wave is generally written as $\boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$, where $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}$ and $\boldsymbol{k}=\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}$ are constant complex vectors, $\boldsymbol{r}=x \widehat{\boldsymbol{x}}+y \widehat{\boldsymbol{y}}+z \widehat{\mathbf{z}}$ is a real vector that identifies the observation point within a Cartesian coordinate system, and t is a real variable that specifies the observation time. In general, ω is a complex parameter representing the oscillation frequency of the plane-wave, although, in the present problem, you may assume that ω is real-valued.
2 pts a) Considering that the actual E-field is the real part of the above $\boldsymbol{E}(\boldsymbol{r}, t)$, write an expression for the actual E-field in terms of $\boldsymbol{E}_{0}^{\prime}, \boldsymbol{E}_{0}^{\prime \prime}, \boldsymbol{k}^{\prime}, \boldsymbol{k}^{\prime \prime}, \omega, \boldsymbol{r}$, and t.
b) In the expression obtained in part (a), what are the direction and the rate of attenuation of the E-field in the three-dimensional space specified by the position vector \boldsymbol{r} ?
2 pts c) In the expression obtained in part (a), what are the direction and the speed of propagation of the E-field's phase-fronts in the three-dimensional space specified by the position vector \boldsymbol{r} ?
2 pts d) In accordance with the expression obtained in part (a), what determines the state of polarization of the plane-wave? When is the plane-wave linearly-polarized? Under what circumstances can one say that the plane-wave is circularly-polarized?

2 pts
e) Under what circumstances can one say that the plane-wave is homogeneous? Explain the nature of the physical differences between homogeneous and inhomogeneous plane-waves.

2 pts
Problem 3) a) For an electromagnetic plane-wave residing inside a linear, isotropic, and homogeneous medium, write a (generally complex) pair of expressions for the electric field $\boldsymbol{E}(\boldsymbol{r}, t)$ and the magnetic field $\boldsymbol{H}(\boldsymbol{r}, t)$ in terms of $\boldsymbol{E}_{0}, \boldsymbol{H}_{0}, \boldsymbol{k}$, and ω.
3 pts b) Assuming that $\rho_{\text {free }}(\boldsymbol{r}, t)=0$ and $\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)=0$, write all four equations of Maxwell for the E-field and H-field of the plane-wave, keeping in mind that the remaining sources within the medium should be expressed as $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \chi_{\mathrm{e}}(\omega) \boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{M}(\boldsymbol{r}, t)=\mu_{0} \chi_{\mathrm{m}}(\omega) \boldsymbol{H}(\boldsymbol{r}, t)$. Simplify these equations by eliminating the $\boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times, \partial / \partial t$ operators and using the material medium's (relative) permittivity $\varepsilon(\omega)=1+\chi_{\mathrm{e}}(\omega)$ and permeability $\mu(\omega)=1+\chi_{\mathrm{m}}(\omega)$.
c) Use Maxwell's $1^{\text {st }}$ equation obtained in part (b) to express $E_{0 z}$ in terms of $E_{0 x}, E_{0 y}, k_{x}, k_{y}, k_{z}$.
d) Derive the dispersion relation $\boldsymbol{k} \cdot \boldsymbol{k}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)$ from the Maxwell equations obtained in part (b). How is the material medium's (complex) refractive index $n(\omega)$ related to its (relative) permittivity $\varepsilon(\omega)$ and permeability $\mu(\omega)$?

Hint: The vector identity $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$ should be helpful.
Problem 4) The Poynting vector is defined as $\boldsymbol{S}(\boldsymbol{r}, t)=\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)$, where $\boldsymbol{E}, \boldsymbol{H}$, and \boldsymbol{S} at the arbitrary point (\boldsymbol{r}, t) in spacetime are intended to be real-valued. When complex notation is used for the electromagnetic fields, one can write $\boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}^{\prime}(\boldsymbol{r}, t)+\mathrm{i} \boldsymbol{E}^{\prime \prime}(\boldsymbol{r}, t)$, where \boldsymbol{E}^{\prime} and $\boldsymbol{E}^{\prime \prime}$ are the real and imaginary parts of the complex E-field. Similarly, one writes $\boldsymbol{H}(\boldsymbol{r}, t)=$ $\boldsymbol{H}^{\prime}(\boldsymbol{r}, t)+\mathrm{i} \boldsymbol{H}^{\prime \prime}(\boldsymbol{r}, t)$, with \boldsymbol{H}^{\prime} and $\boldsymbol{H}^{\prime \prime}$ being the real and imaginary parts of the H-field.
a) What is the correct expression for the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ in terms of $\boldsymbol{E}^{\prime}, \boldsymbol{E}^{\prime \prime}, \boldsymbol{H}^{\prime}$, and $\boldsymbol{H}^{\prime \prime}$?
b) When complex notation is used for \boldsymbol{E} and \boldsymbol{H} fields, the incorrect way to express the Poynting vector is $\boldsymbol{S}(\boldsymbol{r}, t)=\operatorname{Real}\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)\}$. Write this incorrect expression for $\boldsymbol{S}(\boldsymbol{r}, t)$ in terms of $\boldsymbol{E}^{\prime}, \boldsymbol{E}^{\prime \prime}, \boldsymbol{H}^{\prime}, \boldsymbol{H}^{\prime \prime}$, then confirm that indeed it differs from the correct expression found in (a).

Problem 5) A linear, isotropic, homogeneous material medium is said to be transparent when its refractive index $n(\omega)$ is real-valued. Let a plane-wave described by its electric and magnetic fields $\boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$ and $\boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$ reside within this transparent medium. In general, $\boldsymbol{E}_{0}, \boldsymbol{H}_{0}, \boldsymbol{k}$, and ω are complex entities, but, for purposes of this problem, you may assume that ω is real-valued. When the plane-wave is homogeneous (i.e., when $\boldsymbol{k}^{\prime \prime}=0$), we say the plane-wave is of "propagating" type, and when it is inhomogeneous (i.e., when $\boldsymbol{k}^{\prime \prime} \neq 0$) while the host medium is transparent, we say the plane-wave is "evanescent."

2 pts a) Use the dispersion relation to show that, for evanescent waves, \boldsymbol{k}^{\prime} and $\boldsymbol{k}^{\prime \prime}$ must be orthogonal to each other (that is, $\boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=0$) and, moreover, $\left|\boldsymbol{k}^{\prime}\right|>\left|\boldsymbol{k}^{\prime \prime}\right|$.

2 pts
b) Invoke Maxwell's $3^{\text {rd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)=-\partial \boldsymbol{B}(\boldsymbol{r}, t) / \partial t$, to express \boldsymbol{H}_{0} in terms of $\boldsymbol{k}, \boldsymbol{E}_{0}$, ω, μ_{0}, and $\mu(\omega)$. [Note that, for transparent materials, $\mu(\omega)$ and $\varepsilon(\omega)$ must be real-valued.]
3 pts
c) Evaluate the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=1 / 2 \operatorname{Real}\left\{\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}^{*}(\boldsymbol{r}, t)\right\}$, then show that the component of this time-averaged Poynting vector along the direction of $\boldsymbol{k}^{\prime \prime}$ vanishes.
Hint: The vector identity $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{c}) \boldsymbol{b}-(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$ should be helpful.

