Please write your name and ID number on the first page before scanning/photographing the pages. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A homogeneous plane-wave of frequency ω arrives at the interface between two linear, isotropic, homogeneous media at an incidence angle θ that is greater than the critical angle θ_{c} for total internal reflection. The plane of incidence is $x z$, the incident beam is p polarized, and the incidence and transmittance media have permeability $\mu_{a}(\omega)=1, \mu_{b}(\omega)=1$, and real-valued permittivity $\varepsilon_{a}(\omega)>\varepsilon_{b}(\omega)>1$. The magnetic field within the transmittance medium, being oriented along the y-axis, is written as $\boldsymbol{H}^{(\mathrm{t})}(\boldsymbol{r}, t)=H_{0 y} \widehat{\boldsymbol{y}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right]$.

4 pts a) Write the expressions of $\boldsymbol{k}^{(\mathrm{i})}, \boldsymbol{k}^{(\mathrm{r})}$, and $\boldsymbol{k}^{(\mathrm{t})}$ for the incident, reflected, and transmitted k vectors in terms of ω, the speed of light in vacuum, c, and the refractive indices $n_{a}(\omega)$ and $n_{b}(\omega)$ of the two media.

4 pts

2 pts
4 pts

3 pts
3 pts
b) Use the dispersion relation in the transmittance medium to derive $k_{z}^{(\mathrm{t})}$ as a function of the incidence angle θ, the frequency ω, the speed of light in vacuum, c, and the refractive indices $n_{a}(\omega)$ and $n_{b}(\omega)$ of the two media. Explain why $k_{z}^{(\mathrm{t})}$ should be a negative imaginary number.
c) Confirm that the transmitted wave satisfies Maxwell's $4^{\text {th }}$ equation, namely, $\boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0$.
d) In the absence of free currents (i.e., $\boldsymbol{J}_{\text {free }}=0$), use Maxwell's $2^{\text {nd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{H}=\partial_{t} \boldsymbol{D}$, to express the electric field $\boldsymbol{E}^{(\mathrm{t})}(\boldsymbol{r}, t)$ of the evanescent wave within the transmittance medium in terms of the corresponding magnetic field amplitude $H_{0 y}^{(\mathrm{t})}$ and the various system parameters.
e) Confirm that the transmitted wave satisfies Maxwell's $1^{\text {st }}$ and $3^{\text {rd }}$ equations as well.
f) Show that the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ of the evanescent wave has a nonzero component along the x-axis, while its components along the y and z axes are precisely zero. Express the x-component of the time-averaged Poynting vector in terms $H_{0 y}^{(\mathrm{t})}$ and the various system parameters.

Problem 2) A large, thin sheet of dielectric material has (very small) thickness d, relative permittivity $\varepsilon(\omega)$, and relative permeability $\mu(\omega)=1$. The sheet sits in the $x y$-plane of a Cartesian coordinate system at $z=0$, where its electric dipoles oscillate at a fixed frequency ω along the y-axis. The material polarization is

$$
\boldsymbol{P}(\boldsymbol{r}, t)=P_{0} \widehat{\boldsymbol{y}} \cos \left(\kappa_{0} x-\omega t-\varphi_{0}\right),
$$

where $P_{0}, \kappa_{0}, \omega$ and φ_{0} are positive real-valued constants. The oscillating dipoles radiate a pair of s-polarized plane-waves into the right half-
 space $z>0$ and left half-space $z<0$, as shown. Aside from their propagation directions, which are at $\pm \theta$ relative to the x-axis within the $x z$-plane, the two radiated plane-waves are identical in every respect.

4 pts a) In terms of $\omega, \theta, E_{0}=\left|E_{01}\right|=\left|E_{02}\right|, c=\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$, and $Z_{0}=\left(\mu_{0} / \varepsilon_{0}\right)^{1 / 2}$, write expressions for $\boldsymbol{k}_{1}, \boldsymbol{E}_{1}(\boldsymbol{r}, t), \boldsymbol{H}_{1}(\boldsymbol{r}, t)$ and $\boldsymbol{k}_{2}, \boldsymbol{E}_{2}(\boldsymbol{r}, t), \boldsymbol{H}_{2}(\boldsymbol{r}, t)$.
4 pts b) Invoking Maxwell's $2^{\text {nd }}$ equation, $\boldsymbol{\nabla} \times \boldsymbol{H}=\partial \boldsymbol{D} / \partial t$, along with the fact that the thickness d of the sheet is very small, show that the spatial frequency κ_{0} of the polarization $\boldsymbol{P}(\boldsymbol{r}, t)$ along the x-axis is given by $\kappa_{0}=(\omega / c) \cos \theta$.
Warning: Do not attempt to relate the D-field inside the material medium to the local E-field via the permittivity $\varepsilon_{0} \varepsilon(\omega)$. This is because the dipoles are being driven by metaphorical "ants" at this point. Later, when an incident plane-wave is brought in to drive the dipoles, you will be able to invoke the constitutive relation $\boldsymbol{D}=\varepsilon_{0} \varepsilon(\omega) \boldsymbol{E}$.

4 pts

4 pts

4 pts
c) Confirm that $\boldsymbol{E}_{\|}$and \boldsymbol{B}_{\perp} are continuous across the dielectric sheet, then relate the discontinuity of $\boldsymbol{H}_{\|}$to the time-derivative of the D-field inside the material.
d) Let the electric dipoles be driven by the incident E-field $\boldsymbol{E}_{0}^{(\text {inc) }} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$ of an s-polarized plane-wave whose k-vector coincides with \boldsymbol{k}_{1}. Inside the dielectric sheet, we have

$$
\boldsymbol{D}(\boldsymbol{r}, t)=\varepsilon_{0} \varepsilon(\omega)\left(E_{0}^{(\mathrm{inc})}+E_{0}\right) \widehat{\boldsymbol{y}} \exp \left[\mathrm{i}\left(\kappa_{0} x-\omega t\right)\right] .
$$

Invoking $\boldsymbol{\nabla} \times \boldsymbol{H}=\partial \boldsymbol{D} / \partial t$ to relate the discontinuity of $\boldsymbol{H}_{\|}$ across the sheet to the time-derivative of the above D-field, find the reflection coefficient $E_{0} / E_{0}^{(\mathrm{inc})}$.
e) Considering that the transmitted E-field can be written as $\left(\boldsymbol{E}_{0}^{(\mathrm{inc})}+\boldsymbol{E}_{01}\right) \exp \left[\mathrm{i}\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}-\omega t\right)\right]$, find the transmission coefficient for the E-field.

Hint: $\boldsymbol{\nabla} \times \boldsymbol{H}=\left(\partial_{y} H_{z}-\partial_{z} H_{y}\right) \widehat{\boldsymbol{x}}+\left(\partial_{z} H_{x}-\partial_{x} H_{z}\right) \widehat{\boldsymbol{y}}+\left(\partial_{x} H_{y}-\partial_{y} H_{x}\right) \hat{\mathbf{z}}$.
For the partial derivative $\partial_{z} H_{x}$, since H_{x} is discontinuous at $z=0$, use $\partial_{z} H_{x} \cong \Delta H_{x} / \Delta z=\Delta H_{x} / d$.

