Please write your name and ID number on the first page before scanning/photographing the pages. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A homogeneous plane-wave of frequency ω arrives at the interface between two linear, isotropic, homogeneous media at an incidence angle θ that is greater than the critical angle θ_c for total internal reflection. The plane of incidence is xz, the incident beam is p-polarized, and the incidence and transmittance media have permeability $\mu_a(\omega) = 1$, $\mu_b(\omega) = 1$, and real-valued permittivity $\varepsilon_a(\omega) > \varepsilon_b(\omega) > 1$. The magnetic field within the transmittance medium, being oriented along the y-axis, is written as $H^{(t)}(\mathbf{r}, t) = H_{oy}\hat{\mathbf{y}} \exp[i(\mathbf{k}^{(t)} \cdot \mathbf{r} - \omega t)]$.

- 4 pts a) Write the expressions of $\mathbf{k}^{(i)}$, $\mathbf{k}^{(r)}$, and $\mathbf{k}^{(t)}$ for the incident, reflected, and transmitted *k*-vectors in terms of ω , the speed of light in vacuum, *c*, and the refractive indices $n_a(\omega)$ and $n_b(\omega)$ of the two media.
- 4 pts b) Use the dispersion relation in the transmittance medium to derive $k_z^{(t)}$ as a function of the incidence angle θ , the frequency ω , the speed of light in vacuum, c, and the refractive indices $n_a(\omega)$ and $n_b(\omega)$ of the two media. Explain why $k_z^{(t)}$ should be a negative imaginary number.
- 2 pts c) Confirm that the transmitted wave satisfies Maxwell's 4th equation, namely, $\nabla \cdot B(\mathbf{r}, t) = 0$.
- 4 pts d) In the absence of free currents (i.e., $J_{\text{free}} = 0$), use Maxwell's 2nd equation, $\nabla \times H = \partial_t D$, to express the electric field $E^{(t)}(r,t)$ of the evanescent wave within the transmittance medium in terms of the corresponding magnetic field amplitude $H_{0v}^{(t)}$ and the various system parameters.
- 3 pts e) Confirm that the transmitted wave satisfies Maxwell's 1st and 3rd equations as well.
- 3 pts f) Show that the time-averaged Poynting vector (S(r, t)) of the evanescent wave has a nonzero component along the *x*-axis, while its components along the *y* and *z* axes are precisely zero. Express the *x*-component of the time-averaged Poynting vector in terms H^(t)_{oy} and the various system parameters.

Problem 2) A large, thin sheet of dielectric material has (very small) thickness *d*, relative permittivity $\varepsilon(\omega)$, and relative permeability $\mu(\omega) = 1$. The sheet sits in the *xy*-plane of a Cartesian coordinate system at z = 0, where its electric dipoles oscillate at a fixed frequency ω along the *y*-axis. The material polarization is

$$\boldsymbol{P}(\boldsymbol{r},t) = P_0 \, \boldsymbol{\hat{y}} \cos(\kappa_0 x - \omega t - \varphi_0),$$

where P_0 , κ_0 , ω and φ_0 are positive real-valued constants. The oscillating dipoles radiate a pair of *s*-polarized plane-waves into the right half-

space z > 0 and left half-space z < 0, as shown. Aside from their propagation directions, which are at $\pm \theta$ relative to the *x*-axis within the *xz*-plane, the two radiated plane-waves are identical in every respect.

- 4 pts a) In terms of ω , θ , $E_0 = |E_{01}| = |E_{02}|$, $c = (\mu_0 \varepsilon_0)^{-1/2}$, and $Z_0 = (\mu_0 / \varepsilon_0)^{1/2}$, write expressions for k_1 , $E_1(r, t)$, $H_1(r, t)$ and k_2 , $E_2(r, t)$, $H_2(r, t)$.
- 4 pts b) Invoking Maxwell's 2nd equation, $\nabla \times H = \partial D / \partial t$, along with the fact that the thickness d of the sheet is very small, show that the spatial frequency κ_0 of the polarization P(r, t) along the x-axis is given by $\kappa_0 = (\omega/c) \cos \theta$.

Warning: Do *not* attempt to relate the *D*-field inside the material medium to the local *E*-field via the permittivity $\varepsilon_0 \varepsilon(\omega)$. This is because the dipoles are being driven by metaphorical "ants" at this point. Later, when an incident plane-wave is brought in to drive the dipoles, you will be able to invoke the constitutive relation $\mathbf{D} = \varepsilon_0 \varepsilon(\omega) \mathbf{E}$.

- 4 pts c) Confirm that E_{\parallel} and B_{\perp} are continuous across the dielectric sheet, then relate the discontinuity of H_{\parallel} to the time-derivative of the *D*-field inside the material.
- 4 pts d) Let the electric dipoles be driven by the incident *E*-field $E_0^{(inc)} \exp[i(\mathbf{k} \cdot \mathbf{r} - \omega t)]$ of an *s*-polarized plane-wave whose *k*-vector coincides with \mathbf{k}_1 . Inside the dielectric sheet, we have

$$\boldsymbol{D}(\boldsymbol{r},t) = \varepsilon_0 \varepsilon(\omega) (E_0^{(\text{inc})} + E_0) \hat{\boldsymbol{y}} \exp[i(\kappa_0 x - \omega t)].$$

Invoking $\nabla \times H = \partial D / \partial t$ to relate the discontinuity of H_{\parallel} across the sheet to the time-derivative of the above *D*-field, find the reflection coefficient $E_0/E_0^{(inc)}$.

4 pts e) Considering that the transmitted *E*-field can be written as $(E_0^{(inc)} + E_{01}) \exp[i(k_1 \cdot r - \omega t)]$, find the transmission coefficient for the *E*-field.

 \odot

 H_{02}

Hint: $\nabla \times H = (\partial_y H_z - \partial_z H_y) \hat{x} + (\partial_z H_x - \partial_x H_z) \hat{y} + (\partial_x H_y - \partial_y H_x) \hat{z}.$ For the partial derivative $\partial_z H_x$, since H_x is discontinuous at z = 0, use $\partial_z H_x \cong \Delta H_x / \Delta z = \Delta H_x / d.$