Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A solid spherical particle of radius *R*, volume $v = 4\pi R^3/3$, and uniform polarization $P_0\hat{z}$ (corresponding to an electric dipole moment $p_0 = P_0v\hat{z}$), is centered at the origin of coordinates in free space, producing an electric field inside and outside the sphere, as follows:

$$\boldsymbol{E}(\boldsymbol{r}) = \begin{cases} -\frac{P_0 \hat{\boldsymbol{z}}}{3\varepsilon_0}; & \boldsymbol{r} < \boldsymbol{R}, \\ \frac{p_0}{4\pi\varepsilon_0 r^3} (2\cos\theta \, \hat{\boldsymbol{r}} + \sin\theta \, \hat{\boldsymbol{\theta}}); & \boldsymbol{r} > \boldsymbol{R}. \end{cases}$$

- 4 pts a) Show that the integral of the *E*-field *outside* the sphere (i.e., in the region r > R) equals zero. (This result will be useful later on, when you'll argue that the *average E*-field produced by a large number of randomly distributed spherical dipoles *outside* the spheres can be set to zero.)
- 2 pts b) Let the particle be linearly polarizable with a polarizability coefficient ζ , so that, in the presence of a constant, uniform, externally-applied electric field $E_0 \hat{z}$, the particle's electric dipole moment is given by $p_0 = \zeta E_0 \hat{z}$. What are the units (or dimensions) of ζ ?
- 4 pts c) A large number of identical spherical particles are randomly distributed throughout free space, and a constant, uniform electric field $E_0\hat{z}$ is applied. The particles have radius *R*, polarizability coefficient ζ , and number-density *N* (i.e., number of particles per unit volume is *N*). What volume fraction of space do the particles occupy? What is the *average E*-field within a unit volume of space?

4 pts d) Considering that the spatially-averaged polarization over a unit volume of space is $\langle P(r) \rangle = N \zeta E_0 \hat{z}$, and that you have already found an expression for the

average *E*-field (over a unit volume) in part (c), what is the dielectric susceptibility χ_e of this "gas" of identical (spherical) particles?

- 3 pts e) Generalize the result obtained in part (d) to the case where the gas is a mixture of spherical particles of radii R_1, R_2, \dots, R_K , polarizability coefficients $\zeta_1, \zeta_2, \dots, \zeta_K$, and number-densities N_1, N_2, \dots, N_K .
- 3 pts f) Compare the results of this problem with the Clausius-Mossotti correction to the Lorentz oscillator model by pointing out the similarities and differences between the two.

Hint: In spherical coordinates,

 $\hat{\boldsymbol{r}} = \sin\theta\cos\varphi\,\hat{\boldsymbol{x}} + \sin\theta\sin\varphi\,\hat{\boldsymbol{y}} + \cos\theta\,\hat{\boldsymbol{z}}$ $\hat{\boldsymbol{\theta}} = \cos\theta\cos\varphi\,\hat{\boldsymbol{x}} + \cos\theta\sin\varphi\,\hat{\boldsymbol{y}} - \sin\theta\,\hat{\boldsymbol{z}},$ $\hat{\boldsymbol{\varphi}} = -\sin\varphi\,\hat{\boldsymbol{x}} + \cos\varphi\,\hat{\boldsymbol{y}}.$

Problem 2) A *p*-polarized plane wave, having frequency ω , arrives at oblique incidence at the interface between a transparent medium of refractive index $n_1(\omega)$ and a second transparent medium of refractive index $n_2(\omega)$. It is assumed here that $\mu_1(\omega) = \mu_2(\omega) = 1$, and that both $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ are real-valued and greater than 1. In the *xz* plane of incidence, the incidence angle is θ , and the incident *E*-field is $E_{0x}^{(i)}\hat{x} + E_{0z}^{(i)}\hat{z}$. To simplify the notation, you may use $c = 1/\sqrt{\mu_0 \varepsilon_0}$ for the speed of light in vacuum, $Z_0 = \sqrt{\mu_0/\varepsilon_0}$ for the impedance of free space, and $k_0 = \omega/c$ for the vacuum wave-number associated with each plane-wave.

- 2 pts a) Invoking Snell's law and the dispersion relation $\mathbf{k} \cdot \mathbf{k} = k^2 = k_0^2 n^2(\omega)$, identify the *k*-vectors $\mathbf{k}^{(i)}, \mathbf{k}^{(r)}$, and $\mathbf{k}^{(t)}$ of the three plane-waves.
- 2 pts b) Use Maxwell's first equation to relate E_{0z} of each plane-wave to the corresponding E_{0x} , the incidence angle θ , and the refractive indices n_1 and n_2 .
- 3 pts c) Use Maxwell's third equation to express $H_0^{(i)}$, $H_0^{(r)}$, and $H_0^{(t)}$ in terms of the corresponding E_{0x} , the incidence angle θ , the free-space impedance Z_0 , and the refractive indices n_1 and n_2 .
- 3 pts d) Match the boundary conditions at the interfacial plane at z = 0 to arrive at Fresnel's formulas for the reflection coefficient $\rho_p = E_{0x}^{(r)}/E_{0x}^{(i)}$ and transmission coefficient $\tau_p = E_{0x}^{(t)}/E_{0x}^{(i)}$.
- 2 pts e) Find the formula for the Brewster angle θ_B , which is the incidence angle at which $\rho_p = 0$.
- 3 pts f) Under what circumstances does total internal reflection (TIR) occur? In what ways do $k_z^{(t)}$, $E_{0z}^{(t)}$, and $H_0^{(t)}$ change when θ goes from below to above the critical TIR angle θ_c ?
- 3 pts g) Use the results obtained in parts (a)–(d) to relate the Poynting vector $S^{(t)}(x, z, t)$ of the transmitted plane-wave to θ , n_1 , n_2 , ω , k_0 , and $E_{0x}^{(t)}$. (Hint: Cases where TIR does and does not occur require separate treatments.)
- 2 pts h) In the case of total internal reflection, confirm that the time-averaged z-component of the transmitted Poynting vector would vanish, that is, $\langle S_z^{(t)} \rangle = 0$.