Please write your name and ID number on all the pages, then staple them together. Answer all the questions.
Note: Bold symbols represent vectors and vector fields.
Problem 1) A solid spherical particle of radius R, volume $v=4 \pi R^{3} / 3$, and uniform polarization $P_{0} \hat{\mathbf{z}}$ (corresponding to an electric dipole moment $\boldsymbol{p}_{0}=P_{0} v \widehat{\mathbf{z}}$), is centered at the origin of coordinates in free space, producing an electric field inside and outside the sphere, as follows:

$$
\boldsymbol{E}(\boldsymbol{r})= \begin{cases}-\frac{P_{0} \hat{z}}{3 \varepsilon_{0}} ; & r<R \\ \frac{p_{0}}{4 \pi \varepsilon_{0} r^{3}}(2 \cos \theta \hat{\boldsymbol{r}}+\sin \theta \widehat{\boldsymbol{\theta}}) ; & r>R\end{cases}
$$

4 pts a) Show that the integral of the E-field outside the sphere (i.e., in the region $r>R$) equals zero. (This result will be useful later on, when you'll argue that the average E-field produced by a large number of randomly distributed spherical dipoles outside the spheres can be set to zero.)

2 pts

4 pts

4 pts

3 pts

3 pts
b) Let the particle be linearly polarizable with a polarizability coefficient ζ, so that, in the presence of a constant, uniform, externally-applied electric field $E_{0} \hat{\mathbf{z}}$, the particle's electric dipole moment is given by $\boldsymbol{p}_{0}=\zeta E_{0} \hat{\mathbf{z}}$. What are the units (or dimensions) of ζ ?
c) A large number of identical spherical particles are randomly distributed throughout free space, and a constant, uniform electric field $E_{0} \hat{\mathbf{z}}$ is applied. The particles have radius R, polarizability coefficient ζ, and number-density N (i.e., number of particles per unit volume is N). What volume fraction of space do the particles occupy? What is the average E-field within a unit volume of space?
d) Considering that the spatially-averaged polarization over a unit volume of space is $\langle\boldsymbol{P}(\boldsymbol{r})\rangle=N \zeta E_{0} \hat{\mathbf{z}}$, and that you have already found an expression for the
 average E-field (over a unit volume) in part (c), what is the dielectric susceptibility χ_{e} of this "gas" of identical (spherical) particles?
e) Generalize the result obtained in part (d) to the case where the gas is a mixture of spherical particles of radii $R_{1}, R_{2}, \cdots, R_{K}$, polarizability coefficients $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{K}$, and number-densities $N_{1}, N_{2}, \cdots, N_{K}$.
f) Compare the results of this problem with the Clausius-Mossotti correction to the Lorentz oscillator model by pointing out the similarities and differences between the two.

Hint: In spherical coordinates,

$$
\begin{gathered}
\hat{\boldsymbol{r}}=\sin \theta \cos \varphi \widehat{\boldsymbol{x}}+\sin \theta \sin \varphi \widehat{\boldsymbol{y}}+\cos \theta \hat{\mathbf{z}} \\
\widehat{\boldsymbol{\theta}}=\cos \theta \cos \varphi \widehat{\boldsymbol{x}}+\cos \theta \sin \varphi \widehat{\boldsymbol{y}}-\sin \theta \hat{\mathbf{z}}, \\
\widehat{\boldsymbol{\varphi}}=-\sin \varphi \widehat{\boldsymbol{x}}+\cos \varphi \widehat{\boldsymbol{y}} .
\end{gathered}
$$

Problem 2) A p-polarized plane wave, having frequency ω, arrives at oblique incidence at the interface between a transparent medium of refractive index $n_{1}(\omega)$ and a second transparent medium of refractive index $n_{2}(\omega)$. It is assumed here that $\mu_{1}(\omega)=\mu_{2}(\omega)=1$, and that both $\varepsilon_{1}(\omega)$ and $\varepsilon_{2}(\omega)$ are realvalued and greater than 1 . In the $x z$ plane of incidence, the incidence angle is θ, and the incident E-field is $E_{0 x}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{0 z}^{(\mathrm{i})} \widehat{\mathbf{z}}$. To simplify the notation, you may use $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ for the speed of light in vacuum, $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ for the impedance of free space, and $k_{0}=\omega / c$ for the vacuum wave-number associated with each plane-wave.

2 pts a) Invoking Snell's law and the dispersion relation $\boldsymbol{k} \cdot \boldsymbol{k}=k^{2}=k_{0}^{2} n^{2}(\omega)$, identify the k-vectors $\boldsymbol{k}^{(\mathrm{i})}, \boldsymbol{k}^{(\mathrm{r})}$, and $\boldsymbol{k}^{(\mathrm{t})}$ of the three plane-waves.
2 pts b) Use Maxwell's first equation to relate $E_{0 z}$ of each plane-wave to the corresponding $E_{0 x}$, the incidence angle θ, and the refractive indices n_{1} and n_{2}.
3 pts c) Use Maxwell's third equation to express $\boldsymbol{H}_{0}^{(\mathrm{i})}, \boldsymbol{H}_{0}^{(\mathrm{r})}$, and $\boldsymbol{H}_{0}^{(\mathrm{t})}$ in terms of the corresponding $E_{0 x}$, the incidence angle θ, the free-space impedance Z_{0}, and the refractive indices n_{1} and n_{2}.
3 pts d) Match the boundary conditions at the interfacial plane at $z=0$ to arrive at Fresnel's formulas for the reflection coefficient $\rho_{p}=E_{0 x}^{(\mathrm{r})} / E_{0 x}^{(\mathrm{i})}$ and transmission coefficient $\tau_{p}=E_{0 x}^{(\mathrm{t})} / E_{0 x}^{(\mathrm{i})}$.
2 pts e) Find the formula for the Brewster angle θ_{B}, which is the incidence angle at which $\rho_{p}=0$.
3 pts
f) Under what circumstances does total internal reflection (TIR) occur? In what ways do $k_{z}^{(\mathrm{t})}$, $E_{0 z}^{(\mathrm{t})}$, and $\boldsymbol{H}_{0}^{(\mathrm{t})}$ change when θ goes from below to above the critical TIR angle θ_{c} ?
g) Use the results obtained in parts (a)-(d) to relate the Poynting vector $\boldsymbol{S}^{(\mathrm{t})}(x, z, t)$ of the transmitted plane-wave to $\theta, n_{1}, n_{2}, \omega, k_{0}$, and $E_{0 x}^{(\mathrm{t})}$. (Hint: Cases where TIR does and does not occur require separate treatments.)
2 pts
h) In the case of total internal reflection, confirm that the time-averaged z-component of the transmitted Poynting vector would vanish, that is, $\left\langle S_{z}^{(\mathrm{t})}\right\rangle=0$.

