Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A monochromatic plane-wave of frequency ω and wave-vector $\mathbf{k} = (\omega/c)n(\omega)\hat{\mathbf{z}}$ propagates along the *z*-axis within a linear, homogeneous, isotropic medium of refractive index $n(\omega)$. The *E*-field amplitude of the plane-wave is given by the complex vector $\mathbf{E}_0 = \mathbf{E}'_0 + i\mathbf{E}''_0$.

- 3 pts a) Show that both E'_0 and E''_0 are confined to the *xy*-plane; in other words, $E'_{zo} = E''_{zo} = 0$.
- 3 pts b) In terms of the remaining components E'_{xo} , E''_{yo} , E''_{yo} , E''_{o} and E''_{o} , write expressions for the *magnitude* and *phase* of the *E*-field amplitudes along the *x* and *y* axes, namely, $|E_{xo}| \exp(i\varphi_{xo})$ and $|E_{yo}| \exp(i\varphi_{yo})$.
- 4 pts c) The plane-wave is said to be linearly polarized when $\varphi_{xo} \varphi_{yo}$ equals zero or $\pm 180^{\circ}$. Under such circumstances, show that E'_0 and E''_0 must be parallel (or anti-parallel) to each other.
- 4 pts d) The plane-wave is said to be circularly polarized when $|E_{xo}| = |E_{yo}|$ and $\varphi_{xo} \varphi_{yo} = \pm 90^{\circ}$. Under these circumstances, show that the vectors E'_0 and E''_0 have equal lengths and are perpendicular to each other.

Hint: $\tan(\varphi_{x0} - \varphi_{y0}) = [\tan(\varphi_{x0}) - \tan(\varphi_{y0})]/[1 + \tan(\varphi_{x0})\tan(\varphi_{y0})].$

Problem 2) In a linear, homogeneous, isotropic medium, a monochromatic electromagnetic field of frequency ω has its displacement given by $D(\mathbf{r}, t) = \varepsilon_0 \varepsilon(\omega) E(\mathbf{r}, t)$ and its magnetic induction given by $B(\mathbf{r}, t) = \mu_0 \mu(\omega) H(\mathbf{r}, t)$. Defining the vector potential $A(\mathbf{r}, t)$ via $\nabla \times \mathbf{A} = \mathbf{B}$, and the scalar potential $\psi(\mathbf{r}, t)$ via $\mathbf{E} = -\nabla \psi - \partial \mathbf{A}/\partial t$, ensures the satisfaction of Maxwell's third and fourth equations.

- 6 pts a) Assuming that $\rho_{\text{free}}(\mathbf{r},t) = 0$ and $\mathbf{J}_{\text{free}}(\mathbf{r},t) = 0$, and working in an appropriate version of the Lorenz gauge, use Maxwell's first and second equations to arrive at two wave equations (i.e., second-order partial differential equations), one for $\mathbf{A}(\mathbf{r},t)$ and another for $\psi(\mathbf{r},t)$.
- 4 pts b) For plane-waves $A(\mathbf{r},t) = A_0 \exp[i(\mathbf{k} \cdot \mathbf{r} \omega t)]$ and $\psi(\mathbf{r},t) = \psi_0 \exp[i(\mathbf{k} \cdot \mathbf{r} \omega t)]$, use the wave equations obtained in (a) to arrive at the dispersion relation, which relates the wave-vector \mathbf{k} to ω , $n(\omega) = \sqrt{\mu(\omega)\varepsilon(\omega)}$, and the speed of light in vacuum, $c = 1/\sqrt{\mu_0\varepsilon_0}$.
- 4 pts c) Relate the *E*-field and *B*-field amplitudes E_0 and B_0 of the corresponding plane-waves to the amplitudes ψ_0 and A_0 of the scalar and vector potentials described in (b).

Hint: $\nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A$ and $\nabla \cdot (\nabla \psi) = \nabla^2 \psi$.

¹² pts **Problem 3**) Two identical, flat, partially-transmissive mirrors are placed back to back in free space, with a gap *d* separating the two, as shown in the figure. At normal incidence, each mirror has Fresnel reflection coefficient ρ_m and transmission coefficient τ_m . Also, each mirror is constructed such that, whether the incident beam arrives from the left-hand side or from the right-hand side, its reflection coefficients from the front-side and the back-side are identical, as are its corresponding front-side and back-side transmission coefficients.

 \ldots continued on the next page

The figure shows a monochromatic, linearly-polarized plane-wave of frequency ω and E-field amplitude $E_0 = E_0 \hat{x}$ arriving at the front facet of the first mirror at normal incidence, creating a pair of counter-propagating plane-waves with amplitudes E_A and E_B inside the gap, then emerging with amplitude τE_0 from the rear facet of the second mirror. The total E-field amplitude returning from the front facet of the first mirror is denoted by ρE_0 . Find the overall reflection and transmission coefficients (i.e., ρ and τ) of the Fabry-Perot cavity thus formed by the pair of parallel (partially-transmissive) mirrors.

Hint: The various parameters shown in the figure are interrelated. For instance, $\tau E_0 = \tau_m E_A \exp(ik_0 d)$, where $k_0 = \omega/c = 2\pi/\lambda_0$ is the incident beam's wave-number. Similarly, E_A is the superposition of $\tau_m E_0$, which passes through the first mirror, and a certain fraction of E_B , after E_B is phase-shifted (due to propagating a distance d through the gap) and bounced off the back-side of the front mirror. You must write down all the relevant relations, then eliminate E_A , E_B , and E_0 , to arrive at expressions for ρ and τ as functions of ρ_m , τ_m , $k_0 = \omega/c$, and d.