Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A monochromatic plane-wave of frequency ω and wave-vector $\boldsymbol{k}=(\omega / c) n(\omega) \hat{\boldsymbol{z}}$ propagates along the z-axis within a linear, homogeneous, isotropic medium of refractive index $n(\omega)$. The E-field amplitude of the plane-wave is given by the complex vector $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+\mathrm{i} \boldsymbol{E}_{0}^{\prime \prime}$.
c) Relate the E-field and B-field amplitudes \boldsymbol{E}_{0} and \boldsymbol{B}_{0} of the corresponding plane-waves to the amplitudes ψ_{0} and \boldsymbol{A}_{0} of the scalar and vector potentials described in (b).

Hint: $\quad \boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{A})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{A})-\boldsymbol{\nabla}^{2} \boldsymbol{A} \quad$ and $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \psi)=\boldsymbol{\nabla}^{2} \psi$.
12 pts Problem 3) Two identical, flat, partially-transmissive mirrors are placed back to back in free space, with a gap d separating the two, as shown in the figure. At normal incidence, each mirror has Fresnel reflection coefficient ρ_{m} and transmission coefficient τ_{m}. Also, each mirror is constructed such that, whether the incident beam arrives from the left-hand side or from the right-hand side, its reflection coefficients from the front-side and the back-side are identical, as are its corresponding front-side and back-side transmission coefficients.

The figure shows a monochromatic, linearly-polarized plane-wave of frequency ω and E field amplitude $\boldsymbol{E}_{0}=E_{0} \widehat{\boldsymbol{x}}$ arriving at the front facet of the first mirror at normal incidence, creating a pair of counter-propagating plane-waves with amplitudes \boldsymbol{E}_{A} and \boldsymbol{E}_{B} inside the gap, then emerging with amplitude $\tau \boldsymbol{E}_{0}$ from the rear facet of the second mirror. The total E-field amplitude returning from the front facet of the first mirror is denoted by $\rho \boldsymbol{E}_{0}$. Find the overall reflection and transmission coefficients (i.e., ρ and τ) of the Fabry-Perot cavity thus formed by the pair of parallel (partially-transmissive) mirrors.

Hint: The various parameters shown in the figure are interrelated. For instance, $\tau E_{0}=\tau_{m} E_{A} \exp \left(\mathrm{i} k_{0} d\right)$, where $k_{0}=\omega / c=2 \pi / \lambda_{0}$ is the incident beam's wave-number. Similarly, E_{A} is the superposition of $\tau_{m} E_{0}$, which passes through the first mirror, and a certain fraction of E_{B}, after E_{B} is phase-shifted (due to propagating a distance d through the gap) and bounced off the back-side of the front mirror. You must write down all the relevant relations, then eliminate E_{A}, E_{B}, and E_{0}, to arrive at expressions for ρ and τ as functions of $\rho_{m}, \tau_{m}, k_{0}=\omega / c$, and d.

