**Final Exam** (12/12/2017)

## Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

## Note: Bold symbols represent vectors and vector fields.

**Problem 1**) A plane-wave propagates in a medium described by the permeability  $\mu(\omega) = 1.0$ and the refractive index  $n(\omega) = \sqrt{\varepsilon(\omega)} = n'(\omega) + in''(\omega)$ . The oscillation frequency is  $\omega$ , and the propagation direction is the *real-valued* unit-vector  $\hat{\mathbf{k}} = \hat{\kappa}_x \hat{\mathbf{x}} + \hat{\kappa}_y \hat{\mathbf{y}} + \hat{\kappa}_z \hat{\mathbf{z}}$ , so that the *k*vector may be written as  $\mathbf{k} = k\hat{\mathbf{k}}$ , with *k* being the (generally complex-valued) wave-number.

- 3 pts a) Use the dispersion relation to write an expression for the plane-wave's k-vector, clearly identifying the real and imaginary parts of the wave-number  $k(\omega) = k'(\omega) + ik''(\omega)$ .
- 5 pts b) Write expressions for the field amplitudes  $E_0$  and  $H_0$  of the above plane-wave. You may assume that  $E_{x0}$  and  $E_{y0}$  are arbitrarily specified. However,  $E_{z0}$  is not free, and must be specified in terms of  $E_{x0}$ ,  $E_{y0}$ , and the various components of  $\hat{\mathbf{k}}$ . Similarly, the components of the magnetic field amplitude  $(H_{x0}, H_{y0}, H_{z0})$  must be specified in terms of  $E_0$ ,  $n(\omega)$ , and  $\hat{\mathbf{k}}$ .
- 5 pts c) Find the plane-wave's time-averaged Poynting vector  $\langle S(r,t) \rangle = \frac{1}{2} \operatorname{Re}(E \times H^*)$ . (The vector identity  $A \times (B \times C) = (A \cdot C)B (A \cdot B)C$  may be helpful here.) Examine the dependence of  $\langle S(r,t) \rangle$  on the system parameters such as  $n', n'', \hat{\kappa}$ , the *E*-field intensity  $E_0 \cdot E_0^*$ , the frequency  $\omega$ , and the vacuum wavelength  $\lambda_0 = 2\pi c/\omega$ . Identify the absorption coefficient of the medium along the propagation direction  $\hat{\kappa}$ .

Hint: If the time-averaged Poynting vector drops as  $exp(-\alpha d)$ , where d is distance along the propagation direction, then  $\alpha$  is said to be the absorption coefficient. (In contrast, n'' is often referred to as the extinction coefficient.)

**Problem 2**) In the Lorentz oscillator model, when the excitation frequency  $\omega$  is near one of the material medium's resonance frequencies, say,  $\omega_0$ , one is allowed to use a real-valued positive constant  $\chi_b$  — the so-called "background susceptibility" — to represent the contributions of all the distant resonance frequencies to the overall susceptibility of the medium. The effective electric susceptibility in the vicinity of  $\omega_0$  could then be written as

$$\chi_e(\omega) = \chi_{\rm b} + \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\gamma\omega}.$$

- 3 pts a) Write the dielectric function  $\varepsilon(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$  of the above material, and identify its real part  $\varepsilon'(\omega)$  and imaginary part  $\varepsilon''(\omega)$  as separate functions of the excitation frequency  $\omega$ .
- 2 pts b) Assuming that the material permeability is  $\mu(\omega) = 1.0$ , write an expression for the (complex) refractive index  $n(\omega)$  of the material medium in terms of  $\varepsilon'(\omega)$  and  $\varepsilon''(\omega)$ .
- 4 pts c) Let  $f(x) = \sqrt{1+x}$  be a function of a (generally complex-valued) variable x. Expand f(x) in a Taylor series around the point x = 0, clearly identifying the 0<sup>th</sup> order term, the 1<sup>st</sup> order term, and the 2<sup>nd</sup> order term of the Taylor series.
- 4 pts d) Assuming the imaginary part of  $\varepsilon(\omega)$  is much smaller than its real part, i.e.,  $|\varepsilon''/\varepsilon'| \ll 1$ , use the 0<sup>th</sup> and 1<sup>st</sup> order terms of the Taylor series expansion obtained in part (c) above to derive an approximate expression for the real and imaginary parts,  $n'(\omega)$  and  $n''(\omega)$ , of the refractive index  $n(\omega)$  obtained in part (b) above.

**Problem 3)** A transparent dielectric slab of thickness *d* and refractive index  $n_a = \sqrt{\varepsilon_a}$  is sandwiched between two thick, identical metallic plates of (complex) dielectric constant  $\varepsilon_b$ . A guided wave of frequency  $\omega$ , launched from the left-hand-side, is trapped within the dielectric slab while propagating forward along the *x*-axis. The symmetry of the problem allows the guided mode to be represented by a superposition of two plane-waves having wave-vectors  $\mathbf{k}^{(a\pm)} = k_x \hat{\mathbf{x}} \pm k_z^{(a)} \hat{\mathbf{z}}$ , while the plane-waves within the upper and lower metallic plates have wavevectors  $\mathbf{k}^{(b\pm)} = k_x \hat{\mathbf{x}} \pm k_z^{(b)} \hat{\mathbf{z}}$ . In this problem, all the plane-waves are assumed to be linearly polarized along the *y*-axis (i.e., case of *s*-polarization).



- 3 pts a) Use the dispersion relation to write expressions for  $k_z^{(a)}$  and  $k_z^{(b)}$  in terms of  $\varepsilon_a$ ,  $\varepsilon_b$ ,  $\omega$ ,  $k_x$ , and the speed *c* of light in vacuum.
- 3 pts b) Denoting the corresponding *E*-field amplitudes by  $E_0^{(a\pm)}\hat{y}$  and  $E_0^{(b\pm)}\hat{y}$ , write expressions for the *E* and *H* fields of the four plane-waves within their respective media.
- 3 pts c) Write the boundary conditions pertaining to the continuity of  $E_{\parallel}$  and  $H_{\parallel}$  at the metal-dielectric interfaces located at  $z = \pm d/2$ .
- 2 pts d) Find the allowed values of  $E_0^{(a+)}/E_0^{(a-)}$  by comparing the  $H_x/E_y$  ratios at the two boundaries.
- 3 pts e) Using the  $H_x/E_y$  ratio at the upper (or lower) boundary in conjunction with each of the solutions obtained in part (d), find a unique equation for  $k_x$  in each case. (These equations, commonly known as the characteristic equations of the waveguide, must be solved numerically to yield all the allowed values of  $k_x$  at the given frequency  $\omega$ . Here you are *not* being asked to *solve* the characteristic equations; your only task is to *derive* the equations.)