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Opti 501 Final Exam (12/12/2017) Time: 2 hours 
Please write your name and ID number on all the pages, then staple them together. 

Answer all the questions. 
Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) A plane-wave propagates in a medium described by the permeability 𝜇𝜇(𝜔𝜔) = 1.0 
and the refractive index 𝑛𝑛(𝜔𝜔) = �𝜀𝜀(𝜔𝜔) = 𝑛𝑛′(𝜔𝜔) + i𝑛𝑛″(𝜔𝜔). The oscillation frequency is 𝜔𝜔, and 
the propagation direction is the real-valued unit-vector 𝜿𝜿� = �̂�𝜅𝑥𝑥𝒙𝒙� + �̂�𝜅𝑦𝑦𝒚𝒚� + �̂�𝜅𝑧𝑧𝒛𝒛�, so that the 𝑘𝑘-
vector may be written as 𝒌𝒌 = 𝑘𝑘𝜿𝜿�, with 𝑘𝑘 being the (generally complex-valued) wave-number. 

a) Use the dispersion relation to write an expression for the plane-wave’s 𝑘𝑘-vector, clearly 
identifying the real and imaginary parts of the wave-number 𝑘𝑘(𝜔𝜔) = 𝑘𝑘′(𝜔𝜔) + i𝑘𝑘″(𝜔𝜔).  

b ) Write expressions for the field amplitudes 𝑬𝑬0 and 𝑯𝑯0 of the above plane-wave. You may 
assume that 𝐸𝐸𝑥𝑥0 and 𝐸𝐸𝑦𝑦0 are arbitrarily specified. However, 𝐸𝐸𝑧𝑧0 is not free, and must be 
specified in terms of 𝐸𝐸𝑥𝑥0, 𝐸𝐸𝑦𝑦0, and the various components of 𝜿𝜿�. Similarly, the components of 
the magnetic field amplitude (𝐻𝐻𝑥𝑥0,𝐻𝐻𝑦𝑦0,𝐻𝐻𝑧𝑧0) must be specified in terms of 𝑬𝑬0, 𝑛𝑛(𝜔𝜔), and 𝜿𝜿�. 

c) Find the plane-wave’s time-averaged Poynting vector 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 = ½Re(𝑬𝑬 × 𝑯𝑯∗). (The vector 
identity 𝑨𝑨 × (𝑩𝑩 × 𝑪𝑪) = (𝑨𝑨 ∙ 𝑪𝑪)𝑩𝑩− (𝑨𝑨 ∙ 𝑩𝑩)𝑪𝑪 may be helpful here.) Examine the dependence 
of 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 on the system parameters such as 𝑛𝑛′, 𝑛𝑛″, 𝜿𝜿�, the 𝐸𝐸-field intensity 𝑬𝑬0 ∙ 𝑬𝑬0

∗, the 
frequency 𝜔𝜔, and the vacuum wavelength 𝜆𝜆0 = 2𝜋𝜋𝜋𝜋 𝜔𝜔⁄ . Identify the absorption coefficient of 
the medium along the propagation direction 𝜿𝜿�. 

Hint: If the time-averaged Poynting vector drops as exp(−𝛼𝛼𝛼𝛼), where 𝛼𝛼 is distance along the propagation direction, 
then 𝛼𝛼 is said to be the absorption coefficient. (In contrast, 𝑛𝑛″ is often referred to as the extinction coefficient.) 

 
Problem 2) In the Lorentz oscillator model, when the excitation frequency 𝜔𝜔 is near one of the 
material medium’s resonance frequencies, say, 𝜔𝜔0, one is allowed to use a real-valued positive 
constant 𝜒𝜒b — the so-called “background susceptibility” — to represent the contributions of all 
the distant resonance frequencies to the overall susceptibility of the medium. The effective 
electric susceptibility in the vicinity of 𝜔𝜔0 could then be written as 

 𝜒𝜒𝑒𝑒(𝜔𝜔) = 𝜒𝜒b + 𝜔𝜔𝑝𝑝
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2 − 𝜔𝜔2 − i𝛾𝛾𝜔𝜔

 ⋅ 

a) Write the dielectric function 𝜀𝜀(𝜔𝜔) = 𝜀𝜀′(𝜔𝜔) + i𝜀𝜀″(𝜔𝜔) of the above material, and identify its 
real part 𝜀𝜀′(𝜔𝜔) and imaginary part 𝜀𝜀″(𝜔𝜔) as separate functions of the excitation frequency 𝜔𝜔. 

b) Assuming that the material permeability is 𝜇𝜇(𝜔𝜔) = 1.0, write an expression for the (complex) 
refractive index 𝑛𝑛(𝜔𝜔) of the material medium in terms of 𝜀𝜀′(𝜔𝜔) and 𝜀𝜀″(𝜔𝜔). 

c) Let 𝑓𝑓(𝑥𝑥) = √1 + 𝑥𝑥 be a function of a (generally complex-valued) variable 𝑥𝑥. Expand 𝑓𝑓(𝑥𝑥) in 
a Taylor series around the point 𝑥𝑥 = 0, clearly identifying the 0th order term, the 1st order 
term, and the 2nd order term of the Taylor series. 

d) Assuming the imaginary part of 𝜀𝜀(𝜔𝜔) is much smaller than its real part, i.e., |𝜀𝜀″ 𝜀𝜀′⁄ | ≪ 1, use 
the 0th and 1st order terms of the Taylor series expansion obtained in part (c) above to derive 
an approximate expression for the real and imaginary parts, 𝑛𝑛′(𝜔𝜔) and 𝑛𝑛″(𝜔𝜔), of the 
refractive index 𝑛𝑛(𝜔𝜔) obtained in part (b) above. 
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Problem 3) A transparent dielectric slab of thickness 𝛼𝛼 and refractive index 𝑛𝑛a = �𝜀𝜀a is 
sandwiched between two thick, identical metallic plates of (complex) dielectric constant 𝜀𝜀b. A 
guided wave of frequency 𝜔𝜔, launched from the left-hand-side, is trapped within the dielectric 
slab while propagating forward along the 𝑥𝑥-axis. The symmetry of the problem allows the guided 
mode to be represented by a superposition of two plane-waves having wave-vectors 𝒌𝒌(a±) =
𝑘𝑘𝑥𝑥𝒙𝒙� ± 𝑘𝑘𝑧𝑧

(a)𝒛𝒛�, while the plane-waves within the upper and lower metallic plates have wave-
vectors 𝒌𝒌(b±) = 𝑘𝑘𝑥𝑥𝒙𝒙� ± 𝑘𝑘𝑧𝑧

(b)𝒛𝒛�. In this problem, all the plane-waves are assumed to be linearly 
polarized along the 𝑦𝑦-axis (i.e., case of s-polarization). 
 
 
 
 
 
 
 
 
 
 
 
 
a) Use the dispersion relation to write expressions for 𝑘𝑘𝑧𝑧

(a) and 𝑘𝑘𝑧𝑧
(b) in terms of 𝜀𝜀a, 𝜀𝜀b, 𝜔𝜔, 𝑘𝑘𝑥𝑥, and 

the speed 𝜋𝜋 of light in vacuum. 

b) Denoting the corresponding 𝐸𝐸-field amplitudes by 𝐸𝐸0
(a±)𝒚𝒚� and 𝐸𝐸0

(b±)𝒚𝒚�, write expressions for 
the 𝑬𝑬 and 𝑯𝑯 fields of the four plane-waves within their respective media. 

c) Write the boundary conditions pertaining to the continuity of 𝑬𝑬∥ and 𝑯𝑯∥ at the metal-dielectric 
interfaces located at 𝑧𝑧 = ±𝛼𝛼 2⁄ . 

d) Find the allowed values of 𝐸𝐸0
(a+) 𝐸𝐸0

(a−)�  by comparing the 𝐻𝐻𝑥𝑥/𝐸𝐸𝑦𝑦 ratios at the two boundaries. 

e) Using the 𝐻𝐻𝑥𝑥/𝐸𝐸𝑦𝑦 ratio at the upper (or lower) boundary in conjunction with each of the 
solutions obtained in part (d), find a unique equation for 𝑘𝑘𝑥𝑥 in each case. (These equations, 
commonly known as the characteristic equations of the waveguide, must be solved 
numerically to yield all the allowed values of 𝑘𝑘𝑥𝑥 at the given frequency 𝜔𝜔. Here you are not 
being asked to solve the characteristic equations; your only task is to derive the equations.) 
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