Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A plane-wave propagates in a medium described by the permeability $\mu(\omega)=1.0$ and the refractive index $n(\omega)=\sqrt{\varepsilon(\omega)}=n^{\prime}(\omega)+\mathrm{i} n^{\prime \prime}(\omega)$. The oscillation frequency is ω, and the propagation direction is the real-valued unit-vector $\widehat{\boldsymbol{\kappa}}=\hat{\kappa}_{x} \widehat{\boldsymbol{x}}+\hat{\kappa}_{y} \widehat{\boldsymbol{y}}+\hat{\kappa}_{z} \hat{\boldsymbol{z}}$, so that the k vector may be written as $\boldsymbol{k}=k \widehat{\boldsymbol{\kappa}}$, with k being the (generally complex-valued) wave-number.
3 pts a) Use the dispersion relation to write an expression for the plane-wave's k-vector, clearly identifying the real and imaginary parts of the wave-number $k(\omega)=k^{\prime}(\omega)+\mathrm{i} k^{\prime \prime}(\omega)$.
b) Write expressions for the field amplitudes \boldsymbol{E}_{0} and \boldsymbol{H}_{0} of the above plane-wave. You may assume that $E_{x 0}$ and $E_{y 0}$ are arbitrarily specified. However, $E_{z 0}$ is not free, and must be specified in terms of $E_{x 0}, E_{y 0}$, and the various components of $\widehat{\boldsymbol{\kappa}}$. Similarly, the components of the magnetic field amplitude ($H_{x 0}, H_{y 0}, H_{z 0}$) must be specified in terms of $\boldsymbol{E}_{0}, n(\omega)$, and $\widehat{\boldsymbol{\kappa}}$.

5 pts

c) Find the plane-wave's time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle=1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$. (The vector identity $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$ may be helpful here.) Examine the dependence of $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ on the system parameters such as $n^{\prime}, n^{\prime \prime}$, $\widehat{\boldsymbol{\kappa}}$, the E-field intensity $\boldsymbol{E}_{0} \cdot \boldsymbol{E}_{0}^{*}$, the frequency ω, and the vacuum wavelength $\lambda_{0}=2 \pi c / \omega$. Identify the absorption coefficient of the medium along the propagation direction $\widehat{\boldsymbol{\kappa}}$.

Hint: If the time-averaged Poynting vector drops as $\exp (-\alpha d)$, where d is distance along the propagation direction, then α is said to be the absorption coefficient. (In contrast, $n^{\prime \prime}$ is often referred to as the extinction coefficient.)

Problem 2) In the Lorentz oscillator model, when the excitation frequency ω is near one of the material medium's resonance frequencies, say, ω_{0}, one is allowed to use a real-valued positive constant χ_{b} - the so-called "background susceptibility" - to represent the contributions of all the distant resonance frequencies to the overall susceptibility of the medium. The effective electric susceptibility in the vicinity of ω_{0} could then be written as

$$
\chi_{e}(\omega)=\chi_{\mathrm{b}}+\frac{\omega_{p}^{2}}{\omega_{0}^{2}-\omega^{2}-\mathrm{i} \gamma \omega}
$$

3 pts a) Write the dielectric function $\varepsilon(\omega)=\varepsilon^{\prime}(\omega)+\mathrm{i} \varepsilon^{\prime \prime}(\omega)$ of the above material, and identify its real part $\varepsilon^{\prime}(\omega)$ and imaginary part $\varepsilon^{\prime \prime}(\omega)$ as separate functions of the excitation frequency ω.

2 pts b) Assuming that the material permeability is $\mu(\omega)=1.0$, write an expression for the (complex) refractive index $n(\omega)$ of the material medium in terms of $\varepsilon^{\prime}(\omega)$ and $\varepsilon^{\prime \prime}(\omega)$.

4 pts

4 pts
c) Let $f(x)=\sqrt{1+x}$ be a function of a (generally complex-valued) variable x. Expand $f(x)$ in a Taylor series around the point $x=0$, clearly identifying the $0^{\text {th }}$ order term, the $1^{\text {st }}$ order term, and the $2^{\text {nd }}$ order term of the Taylor series.
d) Assuming the imaginary part of $\varepsilon(\omega)$ is much smaller than its real part, i.e., $\left|\varepsilon^{\prime \prime} / \varepsilon^{\prime}\right| \ll 1$, use the $0^{\text {th }}$ and $1^{\text {st }}$ order terms of the Taylor series expansion obtained in part (c) above to derive an approximate expression for the real and imaginary parts, $n^{\prime}(\omega)$ and $n^{\prime \prime}(\omega)$, of the refractive index $n(\omega)$ obtained in part (b) above.

Problem 3) A transparent dielectric slab of thickness d and refractive index $n_{\mathrm{a}}=\sqrt{\varepsilon_{\mathrm{a}}}$ is sandwiched between two thick, identical metallic plates of (complex) dielectric constant ε_{b}. A guided wave of frequency ω, launched from the left-hand-side, is trapped within the dielectric slab while propagating forward along the x-axis. The symmetry of the problem allows the guided mode to be represented by a superposition of two plane-waves having wave-vectors $\boldsymbol{k}^{(\mathrm{a} \pm)}=$ $k_{x} \widehat{\boldsymbol{x}} \pm k_{z}^{(\mathrm{a})} \widehat{\mathbf{z}}$, while the plane-waves within the upper and lower metallic plates have wavevectors $\boldsymbol{k}^{(\mathrm{b} \pm)}=k_{x} \widehat{\boldsymbol{x}} \pm k_{z}^{(\mathrm{b})} \widehat{\mathbf{z}}$. In this problem, all the plane-waves are assumed to be linearly polarized along the y-axis (i.e., case of s-polarization).

3 pts a) Use the dispersion relation to write expressions for $k_{z}^{(\mathrm{a})}$ and $k_{z}^{(\mathrm{b})}$ in terms of $\varepsilon_{\mathrm{a}}, \varepsilon_{\mathrm{b}}, \omega, k_{x}$, and the speed c of light in vacuum.
3 pts b) Denoting the corresponding E-field amplitudes by $E_{0}^{(\mathrm{a} \pm)} \widehat{\boldsymbol{y}}$ and $E_{0}^{(\mathrm{b} \pm)} \widehat{\boldsymbol{y}}$, write expressions for the \boldsymbol{E} and \boldsymbol{H} fields of the four plane-waves within their respective media.

3 pts c) Write the boundary conditions pertaining to the continuity of $\boldsymbol{E}_{\|}$and $\boldsymbol{H}_{\|}$at the metal-dielectric interfaces located at $z= \pm d / 2$.
2 pts d) Find the allowed values of $E_{0}^{(\mathrm{a}+)} / E_{0}^{(\mathrm{a}-)}$ by comparing the H_{x} / E_{y} ratios at the two boundaries.
3 pts e) Using the H_{x} / E_{y} ratio at the upper (or lower) boundary in conjunction with each of the solutions obtained in part (d), find a unique equation for k_{x} in each case. (These equations, commonly known as the characteristic equations of the waveguide, must be solved numerically to yield all the allowed values of k_{x} at the given frequency ω. Here you are not being asked to solve the characteristic equations; your only task is to derive the equations.)

