Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A homogeneous plane-wave of frequency ω is normally incident on a dielectric layer of thickness d and refractive index n_{2}, which is coated on a semi-infinite substrate of (complex) refractive index $n_{3}=n+\mathrm{i} \kappa$. The incidence medium is free space, and $\mu(\omega)=1$ for the dielectric layer and also for its substrate. Let us denote by $\rho_{\ell m}$ and $\tau_{\ell m}$ the Fresnel reflection and transmission coefficients at the interface between the incidence medium ℓ and the transmission medium m.
a) Write expressions for the Fresnel reflection and transmission coefficients $\rho_{12}, \tau_{12}, \rho_{21}, \tau_{21}, \rho_{23}, \tau_{23}$ at normal incidence.
b) Write a self-consistency equation for the E-field amplitude $E_{0}^{(\text {a) }}$ of the downward propagating planewave inside the dielectric layer. Solve the equation to
 obtain an expression for $E_{0}^{(\mathrm{a})} / E_{0}^{(\mathrm{i})}$.

2 Pts

2 Pts

2 Pts
e) Show that the dielectric layer will have no effect on the reflectivity of the substrate if the layer thickness d happens to be an integer-multiple of half wavelength, namely, $d=m \lambda_{0} /\left(2 n_{2}\right)$, where m is an arbitrary integer and $\lambda_{0}=2 \pi c / \omega$ is the vacuum wavelength.

Problem 2) A homogeneous plane-wave of frequency ω propagates inside a linear, homogeneous, isotropic, transparent, non-magnetic medium of refractive index $n_{0}(\omega)$. The beam arrives at the flat interface with a second linear, isotropic, homogeneous medium. The incident beam is p-polarized with E-field amplitude $\boldsymbol{E}_{\mathrm{p}}^{(\mathrm{i})}$, the incidence angle is θ, and the Fresnel reflection coefficient at the interface is $\rho_{\mathrm{p}}=\left|\rho_{\mathrm{p}}\right| \exp \left(\mathrm{i} \varphi_{\mathrm{p}}\right)$.
4 Pts a) Write expressions for the incident and reflected k-vectors, E-fields, and H-fields in the region $z>0$.

) Write an expression relating $E_{0}^{(\mathrm{t})}$ to $E_{0}^{(\mathrm{a})}$, then determine the overall transmission coefficient $E_{0}^{(\mathrm{t})} / E_{0}^{(\mathrm{i})}$.
d) Write an expression relating $E_{0}^{(\mathrm{r})}$ to $E_{0}^{(\mathrm{i})}$ and $E_{0}^{(\mathrm{a})}$, then determine the overall reflection coefficient $E_{0}^{(\mathrm{r})} / E_{0}^{(\mathrm{i})}$. b) Find the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ for both incident and reflected beams in terms of $E_{\mathrm{p}}^{(\mathrm{i})}, \rho_{\mathrm{p}}, n_{0}$, and θ.

Problem 3) A homogeneous plane-wave of frequency ω propagating within a linear, homogeneous, isotropic, transparent, medium of refractive index n_{0} arrives at the flat interface with a second linear, isotropic, homogeneous, nonmagnetic medium of (complex) refractive index $n+\mathrm{i} \kappa$. The incident beam is s-polarized with E-field amplitude $\boldsymbol{E}_{\mathrm{s}}^{(\mathrm{i})}$, the incidence angle is θ, and the Fresnel transmission coefficient at the interface is $\tau_{\mathrm{s}}=\left|\tau_{\mathrm{s}}\right| \exp \left(\mathrm{i} \varphi_{\mathrm{s}}\right)$.
4 Pts a) Write expressions for the transmitted k-vector, E-field,
 and H-field in the region $z<0$.
4 Pts b) Find the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ for the transmitted beam in terms of $E_{\mathrm{s}}^{(\mathrm{i})}, \tau_{\mathrm{s}}$, n_{0}, n, κ, and θ.

Problem 4) An infinitely long, thin wire aligned with the z axis is uniformly magnetized along z. The magnetic dipole moment per unit-length of the wire is specified as $m_{0} \hat{\mathbf{z}}$.

4 Pts
a) Find the bound electric charge-density $\rho_{\text {bound }}^{(e)}(\boldsymbol{r}, t)$ and the bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(e)}(\boldsymbol{r}, t)$ of the wire.
b) Determine the scalar and vector potentials of the wire in the surrounding space, using the following standard (Lorenz gauge) formulas:

$$
\begin{aligned}
& \psi(\boldsymbol{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \iiint_{-\infty}^{\infty} \frac{\rho_{\text {total }}^{(e)}\left(\boldsymbol{r}^{\prime}, t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime}, \\
& \boldsymbol{A}(\boldsymbol{r}, t)=\frac{\mu_{0}}{4 \pi} \iiint_{-\infty}^{\infty} \frac{\boldsymbol{J}_{\text {total }}^{(e)}\left(\boldsymbol{r}^{\prime}, t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right)}{\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|} \mathrm{d} \boldsymbol{r}^{\prime} .
\end{aligned}
$$

4 Pts c) Find the electric and magnetic field distributions, $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{H}(\boldsymbol{r}, t)$, in the space surrounding the wire.

Hint: $\int \frac{\mathrm{d} z}{\left(\alpha+z^{2}\right)^{3 / 2}}=\frac{z}{\alpha \sqrt{\alpha+z^{2}}}$, (G\&R 2.264-5).

