Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) A homogeneous plane-wave of frequency ω is normally incident on a dielectric layer of thickness d and refractive index n_2 , which is coated on a semi-infinite substrate of

(complex) refractive index $n_3 = n + i\kappa$. The incidence medium is free space, and $\mu(\omega) = 1$ for the dielectric layer and also for its substrate. Let us denote by $\rho_{\ell m}$ and $\tau_{\ell m}$ the Fresnel reflection and transmission coefficients at the interface between the incidence medium ℓ and the transmission medium m.

- 2 Pts a) Write expressions for the Fresnel reflection and transmission coefficients ρ_{12} , τ_{12} , ρ_{21} , τ_{21} , ρ_{23} , τ_{23} at normal incidence.
- 4 Pts b) Write a self-consistency equation for the *E*-field amplitude $E_0^{(a)}$ of the downward propagating planewave inside the dielectric layer. Solve the equation to obtain an expression for $E_0^{(a)}/E_0^{(i)}$.

- 2 Pts c) Write an expression relating $E_0^{(t)}$ to $E_0^{(a)}$, then determine the overall transmission coefficient $E_0^{(t)}/E_0^{(i)}$.
- 2 Pts d) Write an expression relating $E_0^{(r)}$ to $E_0^{(i)}$ and $E_0^{(a)}$, then determine the overall reflection coefficient $E_0^{(r)}/E_0^{(i)}$.
- 2 Pts e) Show that the dielectric layer will have no effect on the reflectivity of the substrate if the layer thickness *d* happens to be an integer-multiple of half wavelength, namely, $d = m\lambda_0/(2n_2)$, where *m* is an arbitrary integer and $\lambda_0 = 2\pi c/\omega$ is the vacuum wavelength.

Problem 2) A homogeneous plane-wave of frequency ω propagates inside a linear, homogeneous, isotropic, transparent, non-magnetic medium of refractive index $n_0(\omega)$. The beam arrives at the flat interface with a second linear, isotropic, homogeneous medium. The incident beam is *p*-polarized with *E*-field amplitude $E_p^{(i)}$, the incidence angle is θ , and the Fresnel reflection coefficient at the interface is $\rho_p = |\rho_p| \exp(i\varphi_p)$.

- 4 Pts a) Write expressions for the incident and reflected *k*-vectors, *E*-fields, and *H*-fields in the region z > 0.
- 4 Pts b) Find the time-averaged Poynting vector $\langle S(r,t) \rangle$ for both incident and reflected beams in terms of $E_p^{(i)}$, ρ_p , n_0 , and θ .

Problem 3) A homogeneous plane-wave of frequency ω propagating within a linear, homogeneous, isotropic, transparent, medium of refractive index n_0 arrives at the flat interface with a second linear, isotropic, homogeneous, non-magnetic medium of (complex) refractive index $n + i\kappa$. The incident beam is *s*-polarized with *E*-field amplitude $E_s^{(i)}$, the incidence angle is θ , and the Fresnel transmission coefficient at the interface is $\tau_s = |\tau_s| \exp(i\varphi_s)$.

- 4 Pts a) Write expressions for the transmitted k-vector, E-field, and H-field in the region z < 0.
- 4 Pts b) Find the time-averaged Poynting vector $\langle S(r,t) \rangle$ for the transmitted beam in terms of $E_s^{(i)}$, τ_s , n_0 , n, κ , and θ .

Problem 4) An infinitely long, thin wire aligned with the *z*-axis is uniformly magnetized along *z*. The magnetic dipole moment per unit-length of the wire is specified as $m_0\hat{z}$.

- 4 Pts a) Find the bound electric charge-density $\rho_{\text{bound}}^{(e)}(\mathbf{r},t)$ and the bound electric current-density $J_{\text{bound}}^{(e)}(\mathbf{r},t)$ of the wire.
- 4 Pts b) Determine the scalar and vector potentials of the wire in the surrounding space, using the following standard (Lorenz gauge) formulas:

$$\psi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \iiint_{-\infty}^{\infty} \frac{\rho_{\text{total}}^{(e)}(\mathbf{r}', t-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}'$$
$$A(\mathbf{r},t) = \frac{\mu_0}{4\pi} \iiint_{-\infty}^{\infty} \frac{J_{\text{total}}^{(e)}(\mathbf{r}', t-|\mathbf{r}-\mathbf{r}'|/c)}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r}'.$$

4 Pts c) Find the electric and magnetic field distributions, E(r, t) and H(r, t), in the space surrounding the wire.

Hint:
$$\int \frac{dz}{(\alpha+z^2)^{3/2}} = \frac{z}{\alpha\sqrt{\alpha+z^2}}$$
, (G&R 2.264-5).

