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Opti 501 Final Exam (12/15/2015) Time: 2 hours 

Please write your name and ID number on all the pages, then staple them together. 
Answer all the questions. 

 
Note: Bold symbols represent vectors and vector fields. 
 
Problem 1) In the Lorentz oscillator model, the excitation field 𝑬𝑬(𝑡𝑡) = 𝐸𝐸𝑥𝑥0 cos(𝜔𝜔𝑡𝑡)𝒙𝒙� produces 
a displacement of the electron 𝑥𝑥(𝑡𝑡) = |𝑥𝑥0| cos(𝜔𝜔𝑡𝑡 − 𝜑𝜑0) where 

 |𝑥𝑥0| exp(i𝜑𝜑0) = (𝑞𝑞 𝑚𝑚⁄ )𝐸𝐸𝑥𝑥0
𝜔𝜔2− 𝜔𝜔0

2 + i𝛾𝛾𝜔𝜔
 . 

Here the electron’s charge and mass are −𝑞𝑞 and 𝑚𝑚, respectively, 𝜔𝜔0 = �𝛼𝛼 𝑚𝑚⁄ , where 𝛼𝛼 ≥ 0 is 
the spring constant, and 𝛾𝛾 = 𝛽𝛽 𝑚𝑚⁄ , where 𝛽𝛽 ≥ 0 is the friction coefficient. Now, according to 
Poynting’s theorem, the time-rate-of-exchange of energy between the 𝐸𝐸-field and a localized 
electric dipole 𝒑𝒑(𝑡𝑡) is 

 𝑑𝑑ℰ(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑬𝑬(𝑡𝑡) ∙ 𝑑𝑑𝒑𝒑(𝑡𝑡)
𝑑𝑑𝑡𝑡

. 

The energy ℰ(𝑡𝑡) appears in the form of kinetic energy ℰ𝐾𝐾(𝑡𝑡) and potential energy ℰ𝑃𝑃(𝑡𝑡) of the 
dipole, in addition to the lost energy ℰ𝐿𝐿(𝑡𝑡), which is dissipated via friction. 

a) Write an expression for the (real-valued) dipole moment 𝒑𝒑(𝑡𝑡) of the Lorentz atom, then 
express 𝑑𝑑ℰ(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄  as a function of  𝜔𝜔, 𝑞𝑞, 𝐸𝐸𝑥𝑥0, |𝑥𝑥0|, and 𝜑𝜑0. 

b) Considering that ℰ𝐾𝐾(𝑡𝑡) = ½𝑚𝑚𝑣𝑣𝑥𝑥2(𝑡𝑡), where 𝑣𝑣𝑥𝑥(𝑡𝑡) = 𝑑𝑑𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄  is the electron’s velocity, write 
an expression for the time-rate-of-change of the kinetic energy, 𝑑𝑑ℰ𝐾𝐾 𝑑𝑑𝑡𝑡⁄ , of the Lorentz atom. 

c) Given that ℰ𝑃𝑃(𝑡𝑡) = ½𝛼𝛼𝑥𝑥2(𝑡𝑡), write an expression for the time-rate-of-change of the potential 
energy, 𝑑𝑑ℰ𝑃𝑃 𝑑𝑑𝑡𝑡⁄ , of the Lorentz atom. 

d) The friction force acting on the electron is 𝐹𝐹𝑥𝑥 = −𝛽𝛽𝑑𝑑𝑥𝑥(𝑡𝑡) 𝑑𝑑𝑡𝑡⁄ . When the electron moves a 
distance ∆𝑥𝑥, the work done (i.e., energy spent) against the friction force will be −𝐹𝐹𝑥𝑥∆𝑥𝑥. Write 
an expression for the time-rate-of-expenditure of energy against the friction force, 𝑑𝑑ℰ𝐿𝐿 𝑑𝑑𝑡𝑡⁄ , 
within the Lorentz atom. 

e) Show that your answer to part (a) is precisely equal to the sum of the three expressions that 
you found in parts (b), (c), and (d). 

Hint: cos 𝑎𝑎 cos 𝑏𝑏 − sin𝑎𝑎 sin 𝑏𝑏 = cos(𝑎𝑎 + 𝑏𝑏). 
 
Problem 2) Incident at an angle 𝜃𝜃 at the bottom of a 
glass prism of refractive index 𝑛𝑛(𝜔𝜔) is a circularly-
polarized plane-wave of frequency 𝜔𝜔. The incidence 
angle is greater than the critical angle 𝜃𝜃𝑐𝑐 of total 
internal reflection. You may assume that the 
permeability 𝜇𝜇(𝜔𝜔) of the dielectric material (i.e., glass 
prism) is equal to 1.0. In the free-space region below 
the prism, the electromagnetic field is evanescent. 
(Note that all three components of both 𝑬𝑬 and 𝑯𝑯 fields 
are present in this problem.) 
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a) Write expressions for the 𝑬𝑬 and 𝑯𝑯 fields of the incident beam inside the glass prism. You may 
use a plus sign (+) for one sense of circular polarization, and a minus sign (−) for the 
opposite sense. 

b) Using the Fresnel reflection coefficients 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑠𝑠, write expressions for the 𝑬𝑬 and 𝑯𝑯 fields of 
the reflected beam inside the glass prism. 

c) Use the Fresnel transmission coefficients 𝜏𝜏𝑝𝑝 and 𝜏𝜏𝑠𝑠 to write an expression for the evanescent 𝑬𝑬 
field that resides in the free-space region below the prism. (Hint: You may use Maxwell’s 
first equation, 𝜵𝜵 ∙ 𝑬𝑬 = 0, to express 𝐸𝐸𝑧𝑧t in terms of 𝐸𝐸𝑥𝑥t .) 

d) Use Maxwell’s third equation, 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑩𝑩 𝜕𝜕𝑡𝑡⁄ , to determine the evanescent 𝑯𝑯 field in 
terms of the evanescent 𝑬𝑬 field components that you obtained in part (c). 

e) Calculate 〈𝑆𝑆𝑥𝑥〉, the time-averaged 𝑥𝑥-component of the Poynting vector of the evanescent wave, 
and confirm that it has a non-vanishing value. Verify that 〈𝑆𝑆𝑥𝑥〉 does not change if the sense of 
polarization of the incident beam is switched between right- and left-circular. 

f) Calculate 〈𝑆𝑆𝑦𝑦〉, the time-averaged 𝑦𝑦-component of the Poynting vector of the evanescent wave, 
and confirm that it does not vanish. Moreover, show that 〈𝑆𝑆𝑦𝑦〉 switches sign when the sense of 
incident polarization changes from right- to left-circular. 

g) Calculate 〈𝑆𝑆𝑧𝑧〉, the time-averaged 𝑧𝑧-component of the Poynting vector of the evanescent wave, 
and confirm that it is precisely equal to zero. 

 
Problem 3) Consider a homogeneous plane-wave of frequency 𝜔𝜔, propagating in free space 
along the direction of a 𝑘𝑘-vector specified by its polar and azimuthal angles (𝜃𝜃0,𝜑𝜑0), as shown 
in Fig.(a). The plane-wave is p-polarized relative to the plane of its 𝑘𝑘-vector and the 𝑧𝑧-axis.     
 
 
 
 
 
 
 
 
 
 
 
 
 

a) In the cylindrical coordinate system (𝜌𝜌,𝜑𝜑, 𝑧𝑧), write the components 𝑘𝑘𝑧𝑧 and 𝑘𝑘𝜌𝜌 of the 𝑘𝑘-vector 
in terms of 𝜔𝜔, 𝑐𝑐, and 𝜃𝜃0. 

b) Write the 𝝆𝝆�, 𝝋𝝋� , and 𝒛𝒛� components of the plane-wave’s 𝑬𝑬 and 𝑯𝑯 fields as functions of 𝐸𝐸0, 𝑍𝑍0, 
𝜃𝜃0, 𝜑𝜑0, 𝑘𝑘𝑧𝑧, 𝑘𝑘𝜌𝜌, 𝜔𝜔, 𝜌𝜌, 𝜑𝜑, 𝑧𝑧, and 𝑡𝑡. 

c) Let there be a superposition of a continuum of plane-waves whose 𝑘𝑘-vectors form a right-
circular cone with an apex angle of 2𝜃𝜃0, as shown in Fig.(b). All plane-waves are p-polarized, 
have the same amplitude and phase, and their 𝑘𝑘-vactors have a fixed 𝜃𝜃0 but a variable 𝜑𝜑0 in 
the range of [0, 2𝜋𝜋]. Integrate over 𝜑𝜑0 the fields obtained in part (b) in order to arrive at the 𝑬𝑬 
and 𝑯𝑯 fields of the superposed plane-waves at all points in the cylindrical coordinate system. 

Hint: ∫ exp(i𝑥𝑥 cos𝜑𝜑)𝑑𝑑𝜑𝜑2𝜋𝜋
0 = 2𝜋𝜋𝐽𝐽0(𝑥𝑥) (G&R 3.915-2); 𝐽𝐽0′ (𝑥𝑥) = −𝐽𝐽1(𝑥𝑥) (G&R 8.473-4). 
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