Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) In the Lorentz oscillator model, the excitation field $\boldsymbol{E}(t)=E_{x 0} \cos (\omega t) \widehat{\boldsymbol{x}}$ produces a displacement of the electron $x(t)=\left|x_{0}\right| \cos \left(\omega t-\varphi_{0}\right)$ where

$$
\left|x_{0}\right| \exp \left(\mathrm{i} \varphi_{0}\right)=\frac{(q / m) E_{x 0}}{\omega^{2}-\omega_{0}^{2}+\mathrm{i} \gamma \omega} .
$$

Here the electron's charge and mass are $-q$ and m, respectively, $\omega_{0}=\sqrt{\alpha / m}$, where $\alpha \geq 0$ is the spring constant, and $\gamma=\beta / m$, where $\beta \geq 0$ is the friction coefficient. Now, according to Poynting's theorem, the time-rate-of-exchange of energy between the E-field and a localized electric dipole $\boldsymbol{p}(t)$ is

$$
\frac{d \varepsilon(t)}{d t}=\boldsymbol{E}(t) \cdot \frac{d \boldsymbol{p}(t)}{d t} .
$$

The energy $\mathcal{E}(t)$ appears in the form of kinetic energy $\mathcal{E}_{K}(t)$ and potential energy $\mathcal{E}_{P}(t)$ of the dipole, in addition to the lost energy $\mathcal{E}_{L}(t)$, which is dissipated via friction.

3 Pts a) Write an expression for the (real-valued) dipole moment $\boldsymbol{p}(t)$ of the Lorentz atom, then express $d \varepsilon(t) / d t$ as a function of $\omega, q, E_{x 0},\left|x_{0}\right|$, and φ_{0}.
b) Considering that $\mathcal{E}_{K}(t)=1 / 2 m v_{x}^{2}(t)$, where $v_{x}(t)=d x(t) / d t$ is the electron's velocity, write an expression for the time-rate-of-change of the kinetic energy, $d \varepsilon_{K} / d t$, of the Lorentz atom.

3 Pts c) Given that $\mathcal{E}_{P}(t)=1 / 2 \alpha x^{2}(t)$, write an expression for the time-rate-of-change of the potential energy, $d \varepsilon_{P} / d t$, of the Lorentz atom.
d) The friction force acting on the electron is $F_{x}=-\beta d x(t) / d t$. When the electron moves a distance Δx, the work done (i.e., energy spent) against the friction force will be $-F_{x} \Delta x$. Write an expression for the time-rate-of-expenditure of energy against the friction force, $d \varepsilon_{L} / d t$, within the Lorentz atom.

3 Pts
e) Show that your answer to part (a) is precisely equal to the sum of the three expressions that you found in parts (b), (c), and (d).

Hint: $\cos a \cos b-\sin a \sin b=\cos (a+b)$.
Problem 2) Incident at an angle θ at the bottom of a glass prism of refractive index $n(\omega)$ is a circularlypolarized plane-wave of frequency ω. The incidence angle is greater than the critical angle θ_{c} of total internal reflection. You may assume that the permeability $\mu(\omega)$ of the dielectric material (i.e., glass prism) is equal to 1.0. In the free-space region below the prism, the electromagnetic field is evanescent. (Note that all three components of both \boldsymbol{E} and \boldsymbol{H} fields are present in this problem.)

3 Pts

3 Pts

3 Pts
g) Calculate $\left\langle S_{z}\right\rangle$, the time-averaged z-component of the Poynting vector of the evanescent wave, and confirm that it is precisely equal to zero.

Problem 3) Consider a homogeneous plane-wave of frequency ω, propagating in free space along the direction of a k-vector specified by its polar and azimuthal angles (θ_{0}, φ_{0}), as shown in Fig.(a). The plane-wave is p-polarized relative to the plane of its k-vector and the z-axis.

(b)

4 Pts a) In the cylindrical coordinate system (ρ, φ, z), write the components k_{z} and k_{ρ} of the k-vector in terms of ω, c, and θ_{0}.
4 Pts
b) Write the $\widehat{\boldsymbol{\rho}}, \widehat{\boldsymbol{\varphi}}$, and $\hat{\boldsymbol{z}}$ components of the plane-wave's \boldsymbol{E} and \boldsymbol{H} fields as functions of E_{0}, Z_{0}, $\theta_{0}, \varphi_{0}, k_{z}, k_{\rho}, \omega, \rho, \varphi, z$, and t.

3 Pts
c) Let there be a superposition of a continuum of plane-waves whose k-vectors form a rightcircular cone with an apex angle of $2 \theta_{0}$, as shown in Fig.(b). All plane-waves are p-polarized, have the same amplitude and phase, and their k-vactors have a fixed θ_{0} but a variable φ_{0} in the range of $[0,2 \pi]$. Integrate over φ_{0} the fields obtained in part (b) in order to arrive at the \boldsymbol{E} and \boldsymbol{H} fields of the superposed plane-waves at all points in the cylindrical coordinate system.
Hint: $\quad \int_{0}^{2 \pi} \exp (\mathrm{i} x \cos \varphi) d \varphi=2 \pi J_{0}(x) \quad(\mathrm{G} \& \mathrm{R} 3.915-2) ; \quad J_{0}^{\prime}(x)=-J_{1}(x) \quad(\mathrm{G} \& \mathrm{R} 8.473-4)$.

