Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) In the Lorentz oscillator model, the excitation field $E(t) = E_{x0} \cos(\omega t) \hat{x}$ produces a displacement of the electron $x(t) = |x_0| \cos(\omega t - \varphi_0)$ where

$$|x_0| \exp(\mathrm{i}\varphi_0) = \frac{(q/m)E_{x0}}{\omega^2 - \omega_0^2 + \mathrm{i}\gamma\omega} \cdot$$

Here the electron's charge and mass are -q and m, respectively, $\omega_0 = \sqrt{\alpha/m}$, where $\alpha \ge 0$ is the spring constant, and $\gamma = \beta/m$, where $\beta \ge 0$ is the friction coefficient. Now, according to Poynting's theorem, the time-rate-of-exchange of energy between the *E*-field and a localized electric dipole p(t) is

$$\frac{d\mathcal{E}(t)}{dt} = \boldsymbol{E}(t) \cdot \frac{d\boldsymbol{p}(t)}{dt}.$$

The energy $\mathcal{E}(t)$ appears in the form of kinetic energy $\mathcal{E}_{K}(t)$ and potential energy $\mathcal{E}_{P}(t)$ of the dipole, in addition to the lost energy $\mathcal{E}_{L}(t)$, which is dissipated via friction.

- 3 Pts a) Write an expression for the (real-valued) dipole moment p(t) of the Lorentz atom, then express $d\mathcal{E}(t)/dt$ as a function of ω , q, E_{x0} , $|x_0|$, and φ_0 .
- 3 Pts b) Considering that $\mathcal{E}_K(t) = \frac{1}{2}mv_x^2(t)$, where $v_x(t) = \frac{dx(t)}{dt}$ is the electron's velocity, write an expression for the time-rate-of-change of the kinetic energy, $d\mathcal{E}_K/dt$, of the Lorentz atom.
- 3 Pts c) Given that $\mathcal{E}_P(t) = \frac{1}{2}\alpha x^2(t)$, write an expression for the time-rate-of-change of the potential energy, $d\mathcal{E}_P/dt$, of the Lorentz atom.
- 3 Pts d) The friction force acting on the electron is $F_x = -\beta dx(t)/dt$. When the electron moves a distance Δx , the work done (i.e., energy spent) against the friction force will be $-F_x\Delta x$. Write an expression for the time-rate-of-expenditure of energy against the friction force, $d\mathcal{E}_L/dt$, within the Lorentz atom.
- 3 Pts e) Show that your answer to part (a) is precisely equal to the sum of the three expressions that you found in parts (b), (c), and (d).

Hint: $\cos a \cos b - \sin a \sin b = \cos(a + b)$.

Problem 2) Incident at an angle θ at the bottom of a glass prism of refractive index $n(\omega)$ is a circularlypolarized plane-wave of frequency ω . The incidence angle is greater than the critical angle θ_c of total internal reflection. You may assume that the permeability $\mu(\omega)$ of the dielectric material (i.e., glass prism) is equal to 1.0. In the free-space region below the prism, the electromagnetic field is evanescent. (Note that all three components of both *E* and *H* fields are present in this problem.)

- 3 Pts a) Write expressions for the *E* and *H* fields of the incident beam inside the glass prism. You may use a plus sign (+) for one sense of circular polarization, and a minus sign (-) for the opposite sense.
- 3 Pts b) Using the Fresnel reflection coefficients ρ_p and ρ_s , write expressions for the *E* and *H* fields of the reflected beam inside the glass prism.
- 3 Pts c) Use the Fresnel transmission coefficients τ_p and τ_s to write an expression for the evanescent E field that resides in the free-space region below the prism. (**Hint**: You may use Maxwell's first equation, $\nabla \cdot E = 0$, to express E_z^t in terms of E_x^t .)
- 2 Pts d) Use Maxwell's third equation, $\nabla \times E = -\partial B/\partial t$, to determine the evanescent H field in terms of the evanescent E field components that you obtained in part (c).
- 1 Pt e) Calculate $\langle S_{\chi} \rangle$, the time-averaged *x*-component of the Poynting vector of the evanescent wave, and confirm that it has a non-vanishing value. Verify that $\langle S_{\chi} \rangle$ does not change if the sense of polarization of the incident beam is switched between right- and left-circular.
- 1 Pt f) Calculate $\langle S_y \rangle$, the time-averaged y-component of the Poynting vector of the evanescent wave, and confirm that it does not vanish. Moreover, show that $\langle S_y \rangle$ switches sign when the sense of incident polarization changes from right- to left-circular.
- 1 Pt g) Calculate $\langle S_z \rangle$, the time-averaged z-component of the Poynting vector of the evanescent wave, and confirm that it is precisely equal to zero.

Problem 3) Consider a homogeneous plane-wave of frequency ω , propagating in free space along the direction of a *k*-vector specified by its polar and azimuthal angles (θ_0, φ_0), as shown in Fig.(a). The plane-wave is *p*-polarized relative to the plane of its *k*-vector and the *z*-axis.

- 4 Pts a) In the cylindrical coordinate system (ρ, φ, z) , write the components k_z and k_ρ of the *k*-vector in terms of ω , *c*, and θ_0 .
- 4 Pts b) Write the $\hat{\rho}$, $\hat{\varphi}$, and \hat{z} components of the plane-wave's E and H fields as functions of E_0 , Z_0 , θ_0 , φ_0 , k_z , k_ρ , ω , ρ , φ , z, and t.
- 3 Pts c) Let there be a superposition of a continuum of plane-waves whose k-vectors form a rightcircular cone with an apex angle of $2\theta_0$, as shown in Fig.(b). All plane-waves are p-polarized, have the same amplitude and phase, and their k-vactors have a fixed θ_0 but a variable φ_0 in the range of $[0, 2\pi]$. Integrate over φ_0 the fields obtained in part (b) in order to arrive at the *E* and *H* fields of the superposed plane-waves at all points in the cylindrical coordinate system.

```
Hint: \int_0^{2\pi} \exp(ix \cos \varphi) \, d\varphi = 2\pi J_0(x) (G&R 3.915-2); J_0'(x) = -J_1(x) (G&R 8.473-4).
```