
Opti 501 Final Exam (12/17/2014) Time: 2 hours 

Please write your name and ID number on all the pages, then staple them together. 
Answer all the questions. 

 
Note: Bold symbols represent vectors and vector fields. 
 

Problem 1) An infinitely long, thin wire along the 𝑧𝑧-axis has 
a constant and uniform electric dipole-moment 𝑝𝑝0𝒛𝒛� per unit-
length. 

a) Use Dirac’s 𝛿𝛿-function notation to express the polarization 
density 𝑷𝑷(𝒓𝒓, 𝑡𝑡) of the wire. 

b) Find the scalar and vector potentials established by the 
polarized wire in its surrounding space. 

c) Determine the electric and magnetic fields of the wire in 
its surrounding space. 

d) Repeat parts (a) – (c) for an infinitely long, thin, uniformly-magnetized wire along the 𝑧𝑧-axis, 
whose magnetic dipole-moment per unit-length of the wire is 𝑚𝑚0𝒛𝒛�. 

Hint: ∫ cos𝜑𝜑 exp(i𝑥𝑥 cos𝜑𝜑)𝑑𝑑𝜑𝜑2𝜋𝜋
0 = i2𝜋𝜋𝐽𝐽1(𝑥𝑥);             ∫ 𝐽𝐽1(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0 = 1;               ∫ 𝑑𝑑𝑑𝑑
(1+𝑑𝑑2)3 2⁄ = 𝑑𝑑

√1+𝑑𝑑2
 . 

 
Problem 2) In the so-called “negative-index” media, the relative permittivity 𝜀𝜀(𝜔𝜔) and the 
relative permeability 𝜇𝜇(𝜔𝜔) are both real-valued and negative in some range of frequencies such 
as the interval 𝜔𝜔1 ≤ 𝜔𝜔 ≤ 𝜔𝜔2. Consider a homogeneous plane-wave of frequency 𝜔𝜔 and (real-
valued) 𝑘𝑘-vector propagating in a linear, isotropic, homogeneous, negative-index medium. In this 
problem you are asked to examine the various properties of the plane-wave and, in particular, to 
show that its energy-flow direction is opposite to its 𝑘𝑘-vector. 

a) Use the dispersion relation to express the magnitude of the 𝑘𝑘-vector in terms of the frequency 
𝜔𝜔, the vacuum speed of light, 𝑐𝑐, and the permittivity and permeability of the negative-index 
medium at the oscillation frequency 𝜔𝜔. 

b) Assuming the plane-wave’s complex 𝐸𝐸-field amplitude is 𝑬𝑬0, use Maxwell’s third equation 
(i.e., Faraday’s law) to determine its 𝐻𝐻-field amplitude 𝑯𝑯0. 

c) Calculate the time-averaged Poynting vector 
〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 of the plane-wave, and show that 
its direction is opposite to that of the 𝑘𝑘-
vector. 

d) Find the Fresnel reflection coefficient for a 
homogeneous plane-wave of frequency 𝜔𝜔 
and wave-vector 𝒌𝒌 = (𝜔𝜔 𝑐𝑐⁄ )𝒌𝒌�, upon normal 
incidence from free space onto a negative-
index medium having 𝜇𝜇(𝜔𝜔) = 𝜀𝜀(𝜔𝜔) = −1. 
Specify the plane-wave that is thus 
transmitted into the negative-index medium. 
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Problem 3) Consider the interface between a semi-
infinite transparent dielectric having a real-valued 
and positive permittivity, 𝜀𝜀𝑎𝑎(𝜔𝜔) > 0, and a semi-
infinite lossless metallic medium having a real-
valued and negative permittivity, 𝜀𝜀𝑏𝑏(𝜔𝜔) < 0. It is 
further assumed that |𝜀𝜀𝑏𝑏| > 𝜀𝜀𝑎𝑎. The magnetic 
permeability for both media at the optical frequency 
𝜔𝜔 may be set to unity, that is, 𝜇𝜇𝑎𝑎(𝜔𝜔) = 𝜇𝜇𝑏𝑏(𝜔𝜔) = 1. 
Let an evanescent plane-wave be incident from the 
transparent dielectric onto the metallic surface, thus 
transmitting an inhomogeneous plane-wave into the 
metallic medium. In this problem you are asked to 
investigate the viability of such a system in the 
absence of a third (i.e., reflected) plane-wave. 

a) Let the incident wave’s frequency and 𝑘𝑘-vector be 𝜔𝜔 and 𝒌𝒌(i) = 𝑘𝑘𝑑𝑑𝒙𝒙� + 𝑘𝑘𝑧𝑧
(i)𝒛𝒛�, where 𝑘𝑘𝑑𝑑 is real-

valued and positive. Moreover, the incident wave is 𝑝𝑝-polarized, i.e., 𝑬𝑬0
(i) = 𝐸𝐸𝑑𝑑0

(i)𝒙𝒙� + 𝐸𝐸𝑧𝑧0
(i)𝒛𝒛�. 

Find the electric and magnetic fields of the wave transmitted into the metallic medium by 
matching the boundary conditions at the interfacial 𝑥𝑥𝑥𝑥-plane at 𝑧𝑧 = 0. 

b) Find the time-averaged Poynting vector 〈𝑺𝑺(𝒓𝒓, 𝑡𝑡)〉 for both plane-waves, i.e., the incident wave 
within the transparent dielectric, and the transmitted wave within the metallic medium. 

c) Repeat the same calculations as in part (a) for an 𝑠𝑠-polarized incident evanescent plane-wave, 
and show that, under the circumstances, the boundary conditions cannot be satisfied. 
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