Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) An infinitely long, thin wire along the z-axis has a constant and uniform electric dipole-moment $p_{0} \hat{\mathbf{z}}$ per unitlength.

3 Pts a) Use Dirac's δ-function notation to express the polarization density $\boldsymbol{P}(\boldsymbol{r}, t)$ of the wire.
3 Pts b) Find the scalar and vector potentials established by the polarized wire in its surrounding space.
c) Determine the electric and magnetic fields of the wire in its surrounding space.

d) Repeat parts (a)-(c) for an infinitely long, thin, uniformly-magnetized wire along the z-axis, whose magnetic dipole-moment per unit-length of the wire is $m_{0} \hat{\mathbf{z}}$.
Hint: $\int_{0}^{2 \pi} \cos \varphi \exp (\mathrm{i} x \cos \varphi) d \varphi=\mathrm{i} 2 \pi J_{1}(x) ; \quad \int_{0}^{\infty} J_{1}(x) d x=1 ; \quad \int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}=\frac{x}{\sqrt{1+x^{2}}}$.
Problem 2) In the so-called "negative-index" media, the relative permittivity $\varepsilon(\omega)$ and the relative permeability $\mu(\omega)$ are both real-valued and negative in some range of frequencies such as the interval $\omega_{1} \leq \omega \leq \omega_{2}$. Consider a homogeneous plane-wave of frequency ω and (realvalued) k-vector propagating in a linear, isotropic, homogeneous, negative-index medium. In this problem you are asked to examine the various properties of the plane-wave and, in particular, to show that its energy-flow direction is opposite to its k-vector.
3 Pts a) Use the dispersion relation to express the magnitude of the k-vector in terms of the frequency ω, the vacuum speed of light, c, and the permittivity and permeability of the negative-index medium at the oscillation frequency ω.
b) Assuming the plane-wave's complex E-field amplitude is \boldsymbol{E}_{0}, use Maxwell's third equation (i.e., Faraday's law) to determine its H-field amplitude \boldsymbol{H}_{0}.
c) Calculate the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ of the plane-wave, and show that its direction is opposite to that of the k vector.
d) Find the Fresnel reflection coefficient for a homogeneous plane-wave of frequency ω and wave-vector $\boldsymbol{k}=(\omega / c) \widehat{\boldsymbol{k}}$, upon normal incidence from free space onto a negativeindex medium having $\mu(\omega)=\varepsilon(\omega)=-1$. Specify the plane-wave that is thus transmitted into the negative-index medium.

Problem 3) Consider the interface between a semiinfinite transparent dielectric having a real-valued and positive permittivity, $\varepsilon_{a}(\omega)>0$, and a semiinfinite lossless metallic medium having a realvalued and negative permittivity, $\varepsilon_{b}(\omega)<0$. It is further assumed that $\left|\varepsilon_{b}\right|>\varepsilon_{a}$. The magnetic permeability for both media at the optical frequency ω may be set to unity, that is, $\mu_{a}(\omega)=\mu_{b}(\omega)=1$. Let an evanescent plane-wave be incident from the transparent dielectric onto the metallic surface, thus transmitting an inhomogeneous plane-wave into the metallic medium. In this problem you are asked to investigate the viability of such a system in the absence of a third (i.e., reflected) plane-wave.

a) Let the incident wave's frequency and k-vector be ω and $\boldsymbol{k}^{(\mathrm{i})}=k_{x} \widehat{\boldsymbol{x}}+k_{z}^{(\mathrm{i})} \widehat{\boldsymbol{z}}$, where k_{x} is realvalued and positive. Moreover, the incident wave is p-polarized, i.e., $\boldsymbol{E}_{0}^{(\mathrm{i})}=E_{x 0}^{(\mathrm{i})} \widehat{\boldsymbol{x}}+E_{z 0}^{(\mathrm{i})} \widehat{\mathbf{z}}$. Find the electric and magnetic fields of the wave transmitted into the metallic medium by matching the boundary conditions at the interfacial $x y$-plane at $z=0$.

5 Pts

3 Pts
b) Find the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ for both plane-waves, i.e., the incident wave within the transparent dielectric, and the transmitted wave within the metallic medium.
c) Repeat the same calculations as in part (a) for an s-polarized incident evanescent plane-wave, and show that, under the circumstances, the boundary conditions cannot be satisfied.

