Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

2 Pts
Problem 1) a) Write Maxwell's macroscopic equations for the static case, i.e., when the sources and the fields are time-independent.
2 Pts b) Show that the equations naturally split into two independent sets, one that describes electrostatics and another that describes magnetostatics.

2 Pts c) Identify the sources and the fields in the electrostatic case.
2 Pts d) Identify the sources and the fields in the magnetostatic case.
4 Pts
Problem 2) a) Write Maxwell's macroscopic equations such that all the sources ($\rho_{\text {free }}, \boldsymbol{J}_{\text {free }}, \boldsymbol{P}, \boldsymbol{M}$) are expressed as free charge-density, free-current-density, bound magnetic charge-density, and bound magnetic current-density.
4 Pts b) Confirm the charge-current continuity equation for the bound magnetic charge and current densities, namely, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}+\partial \rho_{\text {bound }}^{(\mathrm{m})} / \partial t=0$.

Problem 3) A circularly-polarized, homogeneous planewave of frequency ω propagates in free space and arrives at the flat surface of a semi-infinite dielectric medium of refractive index $n(\omega)=1.5$. The plane of incidence is $x z$, the dielectric surface is in the $x y$-plane at $z=0$, the incidence angle is $\theta=45^{\circ}$, and the permeability of the dielectric medium is $\mu(\omega)=1.0$.

2 Pts a) Find the reflectivity of the dielectric medium, that is, the fraction of the incident optical power that is reflected from the surface.
2 Pts b) What is the state of polarization of the reflected beam?

2 Pts c) Find the Fresnel transmission coefficients for both p - and s-components of the incident beam.
2 Pts d) What is the state of polarization of the transmitted beam?
2 Pts e) What fraction of the incident optical power is transmitted into the dielectric medium?
2 Pts f) Confirm that the total reflected and transmitted optical power equals that of the incident beam.

Problem 4）A homogeneous plane－wave of frequency ω propagates in free－space along a direction that has polar angle θ and azimuthal angle ϕ in the $x y z$ coordinate system，as shown．
2 Pts a）Write general expressions for the k－vector，the E－field，and the H－ field of the beam．
b）Write all the relevant Maxwell＇s equations to specify as many components of the E －and H －fields as possible．

c）Find the Poynting vector \boldsymbol{S} as a function of position \boldsymbol{r}（in 3－dimensional space）and time t ． ［Note：This is the time－dependent Poynting vector，not its time－averaged value $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ ．］
d）What is the density of the electromagnetic momentum \boldsymbol{p} as a function of (\boldsymbol{r}, t) ？
e）Write expressions for the energy densities of the electric and magnetic fields．
（You may simplify this part of the problem by assuming that \boldsymbol{E}_{0} is real－valued，i．e．， $\boldsymbol{E}_{0}^{\prime \prime}=0$ ， where $\boldsymbol{E}_{0}=\boldsymbol{E}_{0}^{\prime}+i \boldsymbol{E}_{0}{ }^{\prime \prime}$. ）
1 Pt f）Confirm the continuity of energy flux by verifying Poynting＇s theorem for the Poynting vector derived in part（c）and the energy densities derived in part（e）．

```
ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー•ー••
```

Hint： $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$ ，

$$
\begin{aligned}
& (\boldsymbol{A} \times \boldsymbol{B}) \cdot(\boldsymbol{C} \times \boldsymbol{D})=(\boldsymbol{A} \cdot \boldsymbol{C})(\boldsymbol{B} \cdot \boldsymbol{D})-(\boldsymbol{A} \cdot \boldsymbol{D})(\boldsymbol{B} \cdot \boldsymbol{C}), \\
& \sin ^{2} x=1 / 2(1-\cos 2 x) \\
& \cos ^{2} x=1 / 2(1+\cos 2 x) \\
& \sin x \cos x=1 / 2 \sin 2 x .
\end{aligned}
$$

