Please write your name and ID number on all the pages, then staple them together. Answer all the questions.

Note: Bold symbols represent vectors and vector fields.

Problem 1) The Fresnel reflection and transmission coefficients ($\rho_{p}, \tau_{p}, \rho_{s}, \tau_{s}$) may be derived using Maxwell's equations with the aid of boundary conditions involving some components of the tangential \boldsymbol{E} and \boldsymbol{H} fields as well as the perpendicular components of the \boldsymbol{D} and \boldsymbol{B} fields at the interface between two media. Shown in the figure are two isotropic, linear, homogeneous, semi-infinite media joined at the $x y$-plane at $z=0$. The plane of incidence is $x z$, implying that the y-components of the incident, reflected, and transmitted k-vectors are all equal to zero.
a) Write all the relations among the various components of the k-vectors, the E-fields and the H-fields that can be derived from Maxwell's equations within each of the two media. (Treat the cases of p - and s-polarization separately.)
b) Use the continuity of E_{x} and D_{z} at the interface to derive expressions for ρ_{p} and τ_{p}.
c) Use the continuity of H_{x} and B_{z} at the interface to derive expressions for ρ_{s} and τ_{s}.

Problem 2) Inside a transparent dielectric prism of refractive index n, A monochromatic planewave of frequency ω propagates along the k-vector $\boldsymbol{k}^{\mathrm{i}}=k_{x} \hat{\boldsymbol{x}}+k_{z}^{\mathrm{i}} \hat{\mathbf{z}}$, as shown. The plane-wave is linearly polarized along the y-axis (i.e., s-polarization). The incidence angle θ^{i} is greater than the critical angle $\theta_{c}=\sin ^{-1}(1 / n)$ of total internal reflection.
a) Write complete expressions for the \boldsymbol{E} and \boldsymbol{H} fields in the free-space region below the prism.
b) Calculate the electromagnetic energy density $\mathcal{E}(\boldsymbol{r}, t)$ and the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ for the evanescent field below the prism, then confirm the energy continuity equation $\boldsymbol{\nabla} \cdot \boldsymbol{S}(\boldsymbol{r}, t)+\partial \mathcal{E}(\boldsymbol{r}, t) / \partial t=0$.
c) Show that the component of the evanescent field's time-averaged Poynting vector along the z-axis is zero, while that along the x-axis is non-zero.
d) Find the time-averaged areal energy density (per unit
 area of the $x y$-plane) stored in the evanescent field.

Problem 3) The figure shows an infinitely large, thin, planar sheet having a uniform oscillating magnetization $\boldsymbol{M}(\boldsymbol{r}, t)=M_{\mathrm{so}} \delta(y) \cos \left(\omega_{0} t\right) \hat{\mathbf{z}}$.

2 Pts
2 Pts

2 Pts

2 Pts
d) Determine the field distributions $\boldsymbol{E}(\boldsymbol{r}, t)$ and $\boldsymbol{H}(\boldsymbol{r}, t)$ everywhere in space and time.
Hint: $\int_{0}^{\infty} \frac{\sin \left(p \sqrt{x^{2}+a^{2}}\right)}{\sqrt{x^{2}+a^{2}}} \mathrm{~d} x=(\pi / 2) J_{0}(p a) ; \quad a>0, p>0$.

$$
\begin{array}{lll}
\int_{0}^{\infty} \frac{\cos \left(p \sqrt{x^{2}+a^{2}}\right)}{\sqrt{x^{2}+a^{2}}} \mathrm{~d} x=-(\pi / 2) Y_{0}(p a) ; & a>0, p>0 . & (\mathrm{G} \& \mathrm{R} \mathrm{3.876-2)} \\
\int_{0}^{\infty} J_{0}\left(p \sqrt{x^{2}+a^{2}}\right) \mathrm{d} x=p^{-1} \cos (p a) ; & a>0, p>0 . & (\mathrm{G} \& \mathrm{R} 6.677-3) \\
\int_{0}^{\infty} Y_{0}\left(p \sqrt{x^{2}+a^{2}}\right) \mathrm{d} x=p^{-1} \sin (p a) ; & a>0, p>0 . & (\mathrm{G} \& \mathrm{R} 6.677-4)
\end{array}
$$

Problem 4) A static electric point-quadrupole located at the origin of a Cartesian coordinate system has the following charge-density distribution: $\rho(r, t)=Q \delta^{\prime}(x) \delta^{\prime}(y) \delta(z)$.
a) What are the units of $M_{\text {so }}$?
b) Find the bound electric charge- and current-densities ($\left.\rho_{\text {bound }}^{(e)}, \boldsymbol{J}_{\text {bound }}^{(e)}\right)$ associated with the magnetic sheet.
c) Using the standard formula

$$
\boldsymbol{A}(\boldsymbol{r}, t)=\left(\mu_{0} / 4 \pi\right) \int_{-\infty}^{\infty}\left[\boldsymbol{J}\left(\boldsymbol{r}^{\prime}, t-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right| / c\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime},
$$

find the distribution of the vector potential throughout the entire space-time.

(G\&R 3.876-1)
(G\&R 3.876-2)
(G\&R 6.677-3)
a) Draw a simple schematic diagram to indicate how the positive and negative charges of the quadrupole are distributed in the vicinity of the origin.
(Hint: Whereas a dipole has one positive and one negative charge, a quadrupole consists of two positive and two negative charges.)
b) What are the units of Q, the parameter that determines the strength of the quadrupole?
c) Using the formula $\psi(\boldsymbol{r})=\left(4 \pi \varepsilon_{0}\right)^{-1} \int_{-\infty}^{\infty}\left[\rho\left(\boldsymbol{r}^{\prime}\right) /\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right] \mathrm{d} \boldsymbol{r}^{\prime}$, calculate the scalar potential of the pointquadrupole in its surrounding space.
d) Express $\psi(\boldsymbol{r})$ in spherical coordinates, then calculate the electric field distribution $\boldsymbol{E}(\boldsymbol{r})$ produced by the point-quadrupole.

