Opti 501 Prelim Solutions Summer 2018

Day 1) a) V-D(r,t) = ppee(T,t),
VX H(rt) =Jg..(rt)+dD(rt)/0t,
VxE(rt)=-0B(r,t)/0t,
V-B(r,t)=0.

In the above equations, r = xX + yy + zZ is an arbitrary point in space, while t is an
arbitrary instant in time. E is the electric field, H is the magnetic field, D is the displacement,
and B is the magnetic induction. The fields are related to each other, to the permittivity and
permeability of free space, &, and x,, and to polarization P and magnetization M as follows:

D(r,t)=¢ E(r,t)+ P(r,t),
B(r,t)=pu H(r,t)+ M(r,t?).

The sources of the electromagnetic fields (namely, E and H) are the free charge density pgrce,
free current density J.e, polarization P (which is the density of electric dipole moments), and
magnetization M (which is the density of magnetic dipole moments). The operator oJ/ot
represents partial differentiation with respect to time, V- is the divergence operator, and Vx is
the curl operator. The divergence of a vector field such as D(r,¢), which turns out to be a scalar
field, is defined as the integral of D(r,?) over a small closed surface, normalized by the enclosed
volume. The curl of a vector field such as E(r,7), which turns out to be another vector field, when
projected onto the surface normal of a small surface element, yields the line integral of E(r,?)
around the boundary of the small surface element, normalized by the surface area of the element.

b) To derive the charge-current continuity equation from Maxwell’s equations, apply the
divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of
curl is always equal to zero and, therefore, the left-hand-side of the equation becomes

V-V xH)=0. The right-hand side, V-J, . +J(V-D)/0t, thus becomes zero. Maxwell’s first
equation (Gauss’s law) now allows one to replace V-D with pse, yielding the continuity
equation as V-J, +Jp,../0t =0. This equation informs that the integrated free current over any
closed surface is precisely balanced by changes in the electrical charge contained within the
closed surface. If there is a net outflow of the current, the charge within the closed surface must
be decreasing, and if there is a net inflow of current, the charge within must be increasing.

c) In the first of Maxwell’s equations, we substitute D =¢ E + P and obtain

V.(€0E+P):pfree - g()V'E :pfree_V'P - EOV'E:pfree +pl§zzlnd‘

The bound-charge density is thus seen to be p\* (r,t)=-V-P(r,t).

In the second Maxwell equation, we multiply both sides by 14, then add V' xM to both
sides, in order to replace H with B through the identity B =y H + M. We alsouse D=¢g E + P

on the right-hand side of the equation to get rid of D. We will have



A(¢,E + P)

uVxH+VxM=pud,. +,uOT+V><M
— V xB=pu,(Jy.+ PO+ 15,V x M)+ 1,6, 0E /Ot
- V x B = uo (Jfree+ Jlgzzmd) +ﬂogan/0”t'

The bound electric current density is thus found to be J\©  =JP/ot+ u;'VxM. Since the
remaining Maxwell equations do not contain D and H, they remain unchanged.

d) The divergence of J°

w4 18 readily obtained as follows:

V-JO = 3(V-P)ot+ ' V- (VxM).

On the right-hand side of the above equation, the divergence of curl is always zero. Also the
divergence of P(r,t) is, by definition, —p\ .. Therefore, V-J! +Jp /Ot=0. This is the
charge-current continuity equation for the bound electrical charge and current defined in part (c).
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Day 2) a) At the mirror surface, we have z = 0 and the tangential E-field is along the x-axis.
Adding the x-components of the incident and reflected E-fields, we find

E™ 4+ E "D = E cos@exp{i(w/c)[(sin@)x—ct]} - E, cos Oexp{i(w/ c)[(sin@)x —ct]} = 0.

Since the fields inside the perfectly-conducting mirror are zero, the continuity of the tangential

E-field requires E,StOtal) at the front facet of the mirror to vanish. This is indeed the case for the

tangential component of the E-field at z = 0.

b) At the front facet, we have z = 0 and the tangential H-field is along the y-axis. Adding the y-
components of the incident and reflected H-fields, we find

Hy(inc) N Hy(ref ) =2(E,/Z,)exp{i(@w/ c)[(sin @)x —ct]}-

Since the H-field within the perfectly-conducting mirror is zero, the discontinuity of H, must be
accounted for by the presence of a surface-current-density whose magnitude is equal to H, at the
mirror surface, and whose direction, while perpendicular to the H-field, follows the right-hand
rule. We will have

J(x,y,z=0,t)=2(E,/Z,)x exp{i(@/c)[(sinO)x —ct]}.

c) At the front facet, we have z = 0 and the perpendicular E-field is along the z-axis. Adding the
z-components of the incident and reflected E-fields, we find

E. ™)+ E "D = 2F sin@exp{i(w/c)[(sin@)x —ct]}.

Since the E-field within the perfectly-conducting mirror is zero, the discontinuity of £, must be
accounted for by the presence of a surface-charge-density whose magnitude is equal to &£E, at
the mirror surface. We find

ox,y,z=0,t)=2¢ E_ sin 0 exp{i(w/c)[(sin O)x —ct]}.
d) Charge-current continuity equation:
V-J+00,/0t=20J,./10x+o,/0t = 21(w/c)sinO(E,/Z,) expi{i(w/c)[(sinO)x —ct]}
—2iwe E sinf expl{i(w/c)[(sin@)x —ct]}
=2iw(e~¢,)E, sin 0 exp{i(w/c)[(sin @)x —ct]} = 0.




