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Day 1) a) 𝜵𝜵 ∙ 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡), 

 𝜵𝜵 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝑫𝑫(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝜕𝜕⁄ , 

 𝜵𝜵 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0. 
In the above equations, 𝒓𝒓 = 𝑥𝑥𝒙𝒙� + 𝑦𝑦𝒚𝒚� + 𝑧𝑧𝒛𝒛� is an arbitrary point in space, while 𝑡𝑡 is an 

arbitrary instant in time. 𝑬𝑬 is the electric field, 𝑯𝑯 is the magnetic field, 𝑫𝑫 is the displacement, 
and 𝑩𝑩 is the magnetic induction. The fields are related to each other, to the permittivity and 
permeability of free space, εo and µo, and to polarization 𝑷𝑷 and magnetization 𝑴𝑴 as follows: 

 o( , ) ( , ) ( , ),t t tε= +D r E r P r  

 o( , ) ( , ) ( , ).t t tµ= +B r H r M r  

The sources of the electromagnetic fields (namely, E and H) are the free charge density rfree, 
free current density Jfree, polarization P (which is the density of electric dipole moments), and 
magnetization M (which is the density of magnetic dipole moments). The operator ∂ /∂ t 
represents partial differentiation with respect to time, ∇ ⋅  is the divergence operator, and ∇× is 
the curl operator. The divergence of a vector field such as D(r,t), which turns out to be a scalar 
field, is defined as the integral of D(r,t) over a small closed surface, normalized by the enclosed 
volume. The curl of a vector field such as E(r,t), which turns out to be another vector field, when 
projected onto the surface normal of a small surface element, yields the line integral of E(r,t) 
around the boundary of the small surface element, normalized by the surface area of the element. 

b) To derive the charge-current continuity equation from Maxwell’s equations, apply the 
divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of 
curl is always equal to zero and, therefore, the left-hand-side of the equation becomes 

( ) 0.⋅ × =H∇ ∇  The right-hand side, free ( ) ,t∂ ∂⋅ + ⋅J D /∇ ∇  thus becomes zero. Maxwell’s first 
equation (Gauss’s law) now allows one to replace ⋅D∇  with r free, yielding the continuity 
equation as free free/ 0.t∂r ∂⋅ + =J∇  This equation informs that the integrated free current over any 
closed surface is precisely balanced by changes in the electrical charge contained within the 
closed surface. If there is a net outflow of the current, the charge within the closed surface must 
be decreasing, and if there is a net inflow of current, the charge within must be increasing. 

c) In the first of Maxwell’s equations, we substitute oε= +D E P  and obtain 
( )

o free o free o free bound( ) .ee r e r e r r⋅ + = → ⋅ = − ⋅ → ⋅ = +E P E P E∇ ∇ ∇ ∇  

The bound-charge density is thus seen to be ( )
bound( , ) ( , ).e t tρ = − ⋅ρ P ρ∇  

In the second Maxwell equation, we multiply both sides by µo, then add ×M∇  to both 
sides, in order to replace H with B through the identity o .µ= +B H M  We also use oε= +D E P  
on the right-hand side of the equation to get rid of D. We will have 
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The bound electric current density is thus found to be ( ) 1
bound o/ .e t∂ ∂ µ−= + ×J P M∇  Since the 

remaining Maxwell equations do not contain 𝑫𝑫 and 𝑯𝑯, they remain unchanged. 

d) The divergence of ( )
bound

eJ is readily obtained as follows: 
( ) 1
bound o( )/ ( ).e t∂ ∂ µ−⋅ = ⋅ + ⋅ ×J P M∇ ∇ ∇ ∇  

On the right-hand side of the above equation, the divergence of curl is always zero. Also the 
divergence of 𝑷𝑷(𝒓𝒓, 𝑡𝑡) is, by definition, ( )

bound .eρ−  Therefore, ( ) ( )
bound bound / 0.e e t∂ρ ∂⋅ + =J∇  This is the 

charge-current continuity equation for the bound electrical charge and current defined in part (c). 
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Day 2) a) At the mirror surface, we have 𝑧𝑧 = 0 and the tangential 𝐸𝐸-field is along the 𝑥𝑥-axis. 
Adding the 𝑥𝑥-components of the incident and reflected 𝐸𝐸-fields, we find 

o o
(inc) (ref ) cos exp{i( / )[(sin ) ]} cos exp{i( / )[(sin ) ]} 0.x xE E E c x ct E c x ctθ ω θ θ ω θ+ = − − − =  

Since the fields inside the perfectly-conducting mirror are zero, the continuity of the tangential 
𝐸𝐸-field requires 𝐸𝐸𝑥𝑥

(total) at the front facet of the mirror to vanish. This is indeed the case for the 
tangential component of the 𝐸𝐸-field at 𝑧𝑧 = 0. 
 
b) At the front facet, we have 𝑧𝑧 = 0 and the tangential 𝐻𝐻-field is along the 𝑦𝑦-axis. Adding the 𝑦𝑦-
components of the incident and reflected 𝐻𝐻-fields, we find 

(inc) (ref )
o o .2( / ) exp{i( / )[(sin ) ]}y yH H E Z c x ctω θ+ = −  

Since the 𝐻𝐻-field within the perfectly-conducting mirror is zero, the discontinuity of Hy must be 
accounted for by the presence of a surface-current-density whose magnitude is equal to Hy at the 
mirror surface, and whose direction, while perpendicular to the 𝐻𝐻-field, follows the right-hand 
rule. We will have 

o o ˆ( , , 0, ) 2( / ) exp{i( / )[(sin ) ]}.s x y z t E Z c x ctω θ= = −J x  

c) At the front facet, we have 𝑧𝑧 = 0 and the perpendicular 𝐸𝐸-field is along the 𝑧𝑧-axis. Adding the 
𝑧𝑧-components of the incident and reflected 𝐸𝐸-fields, we find 

o
(inc) (ref ) 2 sin exp{i( / )[(sin ) ]}.z zE E E c x ctθ ω θ+ = − −  

Since the 𝐸𝐸-field within the perfectly-conducting mirror is zero, the discontinuity of Ez must be 
accounted for by the presence of a surface-charge-density whose magnitude is equal to εoEz at 
the mirror surface. We find 

o o( , , 0, ) 2 sin exp{i( / )[(sin ) ]}.s x y z t E c x cts e θ ω θ= = −  

d) Charge-current continuity equation: 

o

o o

o o

o o

/ / / 2i( / )sin ( / ) exp{i( / )[(sin ) ]}
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