Day 1 Problem) a) In free space, Maxwell's first equation is $\boldsymbol{\nabla} \cdot\left(\varepsilon_{0} \boldsymbol{E}\right)=0$. Application to the E-field of the plane-wave yields $\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0$. Consequently, $\boldsymbol{k} \cdot \boldsymbol{E}_{0}=0$. This is the general relation between the k-vector and the magnitude \boldsymbol{E}_{0} of the plane-wave's E-field.
b) In free space, Maxwell's fourth equation is $\boldsymbol{\nabla} \cdot\left(\mu_{0} \boldsymbol{H}\right)=0$. Application to the H-field of the plane-wave yields $\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0$. Consequently, $\boldsymbol{k} \cdot \boldsymbol{H}_{0}=0$. This is the general relation between the k-vector and the magnitude \boldsymbol{H}_{0} of the plane-wave's E-field.
c) Maxwell's second equation in free space is $\boldsymbol{\nabla} \times \boldsymbol{H}=\varepsilon_{0} \partial \boldsymbol{E} / \partial t$. Substitution for \boldsymbol{E} and \boldsymbol{H} from the plane-wave expressions yields

$$
\mathrm{i} \boldsymbol{k} \times \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=-\mathrm{i} \omega \varepsilon_{0} \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{H}_{0}=-\varepsilon_{0} \omega \boldsymbol{E}_{0} .
$$

d) Maxwell's third equation in free space is $\boldsymbol{\nabla} \times \boldsymbol{E}=-\mu_{0} \partial \boldsymbol{H} / \partial t$. Substitution for \boldsymbol{E} and \boldsymbol{H} from the plane-wave expressions yields

$$
\mathrm{i} \boldsymbol{k} \times \boldsymbol{E}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=\mathrm{i} \omega \mu_{0} \boldsymbol{H}_{0} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \quad \rightarrow \quad \boldsymbol{k} \times \boldsymbol{E}_{0}=\mu_{0} \omega \boldsymbol{H}_{0} .
$$

e) From part (c) we know that $\boldsymbol{E}_{0}=-\boldsymbol{k} \times \boldsymbol{H}_{0} /\left(\varepsilon_{0} \omega\right)$. Substitution in the result obtained in part (d) then yields

$$
-\boldsymbol{k} \times\left(\boldsymbol{k} \times \boldsymbol{H}_{0}\right) /\left(\varepsilon_{0} \omega\right)=\mu_{0} \omega \boldsymbol{H}_{0} \quad \rightarrow \quad\left(\boldsymbol{k} \cdot \boldsymbol{H}_{0}\right) \boldsymbol{k}-(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{H}_{0}=-\mu_{0} \varepsilon_{0} \omega^{2} \boldsymbol{H}_{0}
$$

Now, in part (b) we found that $\boldsymbol{k} \cdot \boldsymbol{H}_{0}=0$. Therefore, the first term on the left-hand side of the preceding equation disappears, and we are left with $(\boldsymbol{k} \cdot \boldsymbol{k}) \boldsymbol{H}_{0}=\mu_{0} \varepsilon_{0} \omega^{2} \boldsymbol{H}_{0}$. Dropping \boldsymbol{H}_{0} from both sides of this equation yields

$$
\boldsymbol{k} \cdot \boldsymbol{k}=\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right)=\left(k^{\prime 2}-k^{\prime \prime 2}\right)+2 \mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=\mu_{0} \varepsilon_{0} \omega^{2}=(\omega / c)^{2} .
$$

This is the general relation between the wave-vector \boldsymbol{k} and the frequency ω of a plane-wave in free space.

Day 2 Problem)

a) $\boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }} \rightarrow \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=0 \quad \rightarrow \quad \partial E_{z} / \partial z=\partial\left[E_{\mathrm{o}} \cos \left(k_{\mathrm{o}} y-\omega_{\mathrm{o}} t\right)\right] / \partial z=0$.

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{H} & =\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{D} / \partial t \rightarrow-\partial H_{x} / \partial y=\varepsilon_{0} \partial E_{z} / \partial t \tag{1}\\
& \rightarrow \quad H_{\mathrm{o}} k_{\mathrm{o}} \sin \left(k_{\mathrm{o}} y-\omega_{\mathrm{o}} t\right)=\varepsilon_{0} E_{\mathrm{o}} \omega_{\mathrm{o}} \sin \left(k_{\mathrm{o}} y-\omega_{\mathrm{o}} t\right) \quad \rightarrow \quad H_{\mathrm{o}} k_{\mathrm{o}}=\varepsilon_{0} E_{\mathrm{o}} \omega_{0} . \tag{2}
\end{align*}
$$

$\nabla \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t \rightarrow \partial E_{z} / \partial y=-\mu_{0} \partial H_{x} / \partial t$
$\rightarrow-E_{\mathrm{o}} k_{\mathrm{o}} \sin \left(k_{\mathrm{o}} y-\omega_{\mathrm{o}} t\right)=-\mu_{\mathrm{o}} H_{\mathrm{o}} \omega_{\mathrm{o}} \sin \left(k_{\mathrm{o}} y-\omega_{\mathrm{o}} t\right) \quad \rightarrow \quad E_{\mathrm{o}} k_{\mathrm{o}}=\mu_{\mathrm{o}} H_{\mathrm{o}} \omega_{\mathrm{o}}$.
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \quad \rightarrow \quad \mu_{0} \boldsymbol{\nabla} \cdot \boldsymbol{H}=0 \quad \rightarrow \quad \partial H_{x} / \partial x=\partial\left[H_{\mathrm{o}} \cos \left(k_{\mathrm{o}} y-\omega_{0} t\right)\right] / \partial x=0$.
It is seen that Maxwell's $1^{\text {st }}$ and $4^{\text {th }}$ equations are already satisfied. As for the $2^{\text {nd }}$ and $3^{\text {rd }}$ equations, we note that Eq.(2) above yields $E_{0} / H_{0}=k_{0} /\left(\varepsilon_{0} \omega_{0}\right)$, whereas Eq.(3) yields $E_{\mathrm{o}} / H_{0}=\mu_{0} \omega_{0} / k_{0}$. Consequently, we must have $k_{0} /\left(\varepsilon_{0} \omega_{0}\right)=\mu_{0} \omega_{0} / k_{0}$, which yields $k_{0}=\omega_{0} / c$. Substitution into either Eq.(2) or Eq.(3) now reveals that $E_{0} / H_{0}=Z_{0}$.
b) The discontinuity of $D_{\perp}=\varepsilon_{0} E_{z}$ at each surface is equal to the surface charge-density at that surface, that is,

$$
\begin{equation*}
\sigma_{s}(x, y, z= \pm 1 / 2 d, t)=\mp \varepsilon_{0} E_{0} \cos \left(k_{0} y-\omega_{0} t\right) . \tag{5}
\end{equation*}
$$

Similarly, the discontinuity of $H_{\|}=H_{x}$ at each surface is equal to the surface current-density at the corresponding surface, with the current's direction being perpendicular to that of the H field. We thus have

$$
\begin{equation*}
\boldsymbol{J}_{s}(x, y, z= \pm 1 / 2 d, t)=\mp H_{0} \cos \left(k_{0} y-\omega_{0} t\right) \hat{\boldsymbol{y}} . \tag{6}
\end{equation*}
$$

c) At each surface, the charge-current continuity equation $\boldsymbol{\nabla} \cdot \boldsymbol{J}+\partial \rho / \partial t=0$ reduces to $\partial J_{s y} / \partial y+$ $\partial \sigma_{s} / \partial t=0$. With the help of Eqs. (5) and (6), we write the continuity equation as follows:

$$
\begin{align*}
\partial J_{s y} / \partial y+\partial \sigma_{s} / \partial t & = \pm H_{0} k_{0} \sin \left(k_{0} y-\omega_{0} t\right) \mp \varepsilon_{0} E_{0} \omega_{0} \sin \left(k_{0} y-\omega_{0} t\right) \\
& = \pm\left(H_{0} k_{0}-\varepsilon_{0} E_{0} \omega_{0}\right) \sin \left(k_{0} y-\omega_{0} t\right)=0 . \tag{7}
\end{align*}
$$

In the last line of the above equation, we have used Eq. (2) to set $H_{0} k_{\mathrm{o}}$ equal to $\varepsilon_{0} E_{0} \omega_{0}$.

