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Opti 501 Prelim Solutions Summer 2017 
 
Day 1 Problem) a) In free space, Maxwell’s first equation is 𝜵𝜵 ∙ (𝜀𝜀0𝑬𝑬) = 0. Application to the 
𝐸𝐸-field of the plane-wave yields i𝒌𝒌 ∙ 𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] = 0. Consequently, 𝒌𝒌 ∙ 𝑬𝑬0 = 0. This 
is the general relation between the 𝑘𝑘-vector and the magnitude 𝑬𝑬0 of the plane-wave’s 𝐸𝐸-field. 
 
b) In free space, Maxwell’s fourth equation is 𝜵𝜵 ∙ (𝜇𝜇0𝑯𝑯) = 0. Application to the 𝐻𝐻-field of the 
plane-wave yields i𝒌𝒌 ∙ 𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] = 0. Consequently, 𝒌𝒌 ∙ 𝑯𝑯0 = 0. This is the general 
relation between the 𝑘𝑘-vector and the magnitude 𝑯𝑯0 of the plane-wave’s 𝐸𝐸-field. 
 
c) Maxwell’s second equation in free space is 𝛁𝛁 × 𝑯𝑯 = 𝜀𝜀0 𝜕𝜕𝑬𝑬 𝜕𝜕𝜔𝜔⁄ . Substitution for 𝑬𝑬 and 𝑯𝑯 from 
the plane-wave expressions yields 

 i𝒌𝒌 × 𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] = −i𝜔𝜔𝜀𝜀0𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]    →    𝒌𝒌 × 𝑯𝑯0 = −𝜀𝜀0𝜔𝜔𝑬𝑬0. 

d) Maxwell’s third equation in free space is 𝛁𝛁 × 𝑬𝑬 = −𝜇𝜇0 𝜕𝜕𝑯𝑯 𝜕𝜕𝜔𝜔⁄ . Substitution for 𝑬𝑬 and 𝑯𝑯 from 
the plane-wave expressions yields 

 i𝒌𝒌 × 𝑬𝑬0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)] = i𝜔𝜔𝜇𝜇0𝑯𝑯0 exp[i(𝒌𝒌 ∙ 𝒓𝒓 − 𝜔𝜔𝜔𝜔)]     →     𝒌𝒌 × 𝑬𝑬0 = 𝜇𝜇0𝜔𝜔𝑯𝑯0. 

e) From part (c) we know that  𝑬𝑬0 = −𝒌𝒌 × 𝑯𝑯0 (𝜀𝜀0𝜔𝜔)⁄ . Substitution in the result obtained in part 
(d) then yields 

 −𝒌𝒌 × (𝒌𝒌 × 𝑯𝑯0) (𝜀𝜀0𝜔𝜔)⁄ = 𝜇𝜇0𝜔𝜔𝑯𝑯0       →        (𝒌𝒌 ∙ 𝑯𝑯0)𝒌𝒌 − (𝒌𝒌 ∙ 𝒌𝒌)𝑯𝑯0 = −𝜇𝜇0𝜀𝜀0𝜔𝜔2𝑯𝑯0. 

Now, in part (b) we found that 𝒌𝒌 ∙ 𝑯𝑯0 = 0. Therefore, the first term on the left-hand side of the 
preceding equation disappears, and we are left with (𝒌𝒌 ∙ 𝒌𝒌)𝑯𝑯0 = 𝜇𝜇0𝜀𝜀0𝜔𝜔2𝑯𝑯0. Dropping 𝑯𝑯0 from 
both sides of this equation yields 

 𝒌𝒌 ∙ 𝒌𝒌 = (𝒌𝒌′ + i𝒌𝒌″) ∙ (𝒌𝒌′ + i𝒌𝒌″) = (𝑘𝑘′2 − 𝑘𝑘″2) + 2i𝒌𝒌′ ∙ 𝒌𝒌″ = 𝜇𝜇0𝜀𝜀0𝜔𝜔2 = (𝜔𝜔 𝑐𝑐⁄ )2. 

This is the general relation between the wave-vector 𝒌𝒌 and the frequency 𝜔𝜔 of a plane-wave in 
free space. 
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Day 2 Problem) 

a) free o o o o0 / [ cos( )] / 0.zE z E k y t zr e ∂ ∂ ∂ ω ∂⋅ = → ⋅ = → = − =D E∇ ∇  (1) 

 free o/ / /x zt H y E t∂ ∂ ∂ ∂ e ∂ ∂× = + → − =∇ H J D  

 o o oo o oo o o o o o o osin( ) sin( ) .H k k y t E k y t H k Eω e ω ωω e=→ − = − →  (2) 

 o/ / /z xt E y H t∂ ∂ ∂ ∂ µ ∂ ∂× = − → = −E B∇  

 o o o o o o o o oo oo o osin( ) sin( ) .E k k y t H k y E k Htω µ ω ω µ ω→ − − == − − →  (3) 

 o o o o0 0 / [ cos( )] / 0.xH x H k y t xµ ∂ ∂ ∂ ω ∂⋅ = → ⋅ = → = − =B H∇ ∇  (4) 

It is seen that Maxwell’s 1st and 4th equations are already satisfied. As for the 2nd and 3rd 
equations, we note that Eq.(2) above yields Eo/Ho= ko/(eoωo), whereas Eq.(3) yields 
Eo/Ho= µoωo/ko. Consequently, we must have ko/(eoωo) = µoωo/ko, which yields ko =ωo/c. 
Substitution into either Eq.(2) or Eq.(3) now reveals that Eo/Ho= Zo. 
 
b) The discontinuity of D┴= eoEz at each surface is equal to the surface charge-density at that 
surface, that is, 

  σs(x,y,z = ±½d, t) =  eoEocos(koy −ωot). (5) 

Similarly, the discontinuity of H|| = Hx at each surface is equal to the surface current-density 
at the corresponding surface, with the current’s direction being perpendicular to that of the H-
field. We thus have 

  Js(x,y,z = ±½d, t) = Hocos(koy −ωot) y^ . (6) 

c) At each surface, the charge-current continuity equation ∇ ·J +∂r /∂ t = 0 reduces to ∂ Jsy/∂ y + 
∂σs/∂ t = 0. With the help of Eqs. (5) and (6), we write the continuity equation as follows: 

 ∂ Jsy/∂ y +∂σs/∂ t = ± Hokosin(koy −ωot)  eoEoωosin(koy −ωot) 

 = ± (Hoko−eoEoωo)sin(koy −ωot) = 0. (7) 

In the last line of the above equation, we have used Eq.(2) to set Hoko equal to eoEoωo. 
 
 


