Spring 2014 Written Comprehensive Exam

Opti 501

Solution to Problem 1:

a)

$$
\boldsymbol{k}=k_{0} \hat{\mathbf{z}}=(\omega / c) \hat{\mathbf{z}}
$$

b) The beam is linearly-polarized if either $E_{x 0}=0$ or $E_{y 0}=0$ or $\varphi_{x 0}=\varphi_{y 0}$ or $\varphi_{x 0}=\varphi_{y 0} \pm \pi$. The beam is circularly-polarized if $E_{x 0}=E_{y 0}$ and $\varphi_{x 0}-\varphi_{y 0}= \pm \pi / 2$. Under all other circumstances, the beam will be elliptically-polarized.
c) Starting with the assumption that the amplitude and phase of the H-field components are $\left(H_{x 0}, \psi_{x 0}\right)$ and $\left(H_{y 0}, \psi_{y 0}\right)$, we write

$$
\boldsymbol{H}(\boldsymbol{r}, t)=H_{x 0} \cos \left(k_{0} z-\omega t+\psi_{x 0}\right) \widehat{\boldsymbol{x}}+H_{y 0} \cos \left(k_{0} z-\omega t+\psi_{y 0}\right) \widehat{\boldsymbol{y}}
$$

Maxwell's $3^{\text {rd }}$ equation then yields

$$
\boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \quad \rightarrow \quad-\frac{\partial E_{y}}{\partial z} \widehat{\boldsymbol{x}}+\frac{\partial E_{x}}{\partial z} \widehat{\boldsymbol{y}}=-\mu_{0}\left(\frac{\partial H_{x}}{\partial t} \widehat{\boldsymbol{x}}+\frac{\partial H_{y}}{\partial t} \widehat{\boldsymbol{y}}\right) .
$$

Consequently,

$$
\begin{aligned}
-\frac{\partial E_{y}}{\partial z}=-\mu_{0} \frac{\partial H_{x}}{\partial t} & \rightarrow k_{0} E_{y 0} \sin \left(k_{0} z-\omega t+\varphi_{y 0}\right)=-\mu_{0} H_{x 0} \omega \sin \left(k_{0} z-\omega t+\psi_{x 0}\right) \\
& \rightarrow(\omega / c) E_{y 0} \sin \left(k_{0} z-\omega t+\varphi_{y 0}\right)=-\mu_{0} H_{x 0} \omega \sin \left(k_{0} z-\omega t+\psi_{x 0}\right) \\
& \rightarrow H_{x 0}=-E_{y 0} /\left(\mu_{0} c\right)=-E_{y 0} / Z_{0} \quad \text { and } \quad \psi_{x 0}=\varphi_{y 0} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial E_{x}}{\partial z}=-\mu_{0} \frac{\partial H_{y}}{\partial t} & \rightarrow-k_{0} E_{x 0} \sin \left(k_{0} z-\omega t+\varphi_{x 0}\right)=-\mu_{0} H_{y 0} \omega \sin \left(k_{0} z-\omega t+\psi_{y 0}\right) \\
& \rightarrow(\omega / c) E_{x 0} \sin \left(k_{0} z-\omega t+\varphi_{x 0}\right)=\mu_{0} H_{y 0} \omega \sin \left(k_{0} z-\omega t+\psi_{y 0}\right) \\
& \rightarrow H_{y 0}=E_{x 0} /\left(\mu_{0} c\right)=E_{x 0} / Z_{0} \quad \text { and } \quad \psi_{y 0}=\varphi_{x 0} .
\end{aligned}
$$

d) Direct multiplication of the E-field into the H-field obtained in part (c) now yields

$$
\begin{aligned}
\boldsymbol{S}(\boldsymbol{r}, t)= & Z_{0}^{-1}\left[E_{x 0} \cos \left(k_{0} z-\omega t+\varphi_{x 0}\right) \widehat{\boldsymbol{x}}+E_{y 0} \cos \left(k_{0} z-\omega t+\varphi_{y 0}\right) \widehat{\boldsymbol{y}}\right] \\
& \times\left[-E_{y 0} \cos \left(k_{0} z-\omega t+\varphi_{y 0}\right) \widehat{\boldsymbol{x}}+E_{x 0} \cos \left(k_{0} z-\omega t+\varphi_{x 0}\right) \widehat{\boldsymbol{y}}\right] \\
= & Z_{0}^{-1}\left[E_{x 0}^{2} \cos ^{2}\left(k_{0} z-\omega t+\varphi_{x 0}\right)+E_{y 0}^{2} \cos ^{2}\left(k_{0} z-\omega t+\varphi_{y 0}\right)\right] \hat{\boldsymbol{z}} .
\end{aligned}
$$

The Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ is the rate of flow of electromagnetic energy per unit area per unit time, evaluated at the point \boldsymbol{r} in space and at the instant t of time. It must satisfy the energy continuity equation at all points \boldsymbol{r} in space at all instants t in time.
e) For circular-polarization, we have $E_{x 0}=E_{y 0}$ and $\varphi_{x 0}=\varphi_{y 0} \pm \pi / 2$. Therefore,

$$
\boldsymbol{S}(\boldsymbol{r}, t)=Z_{0}^{-1} E_{x 0}^{2}\left[\cos ^{2}\left(k_{0} z-\omega t+\varphi_{x 0}\right)+\sin ^{2}\left(k_{0} z-\omega t+\varphi_{x 0}\right)\right] \hat{\mathbf{z}}=Z_{0}^{-1} E_{x 0}^{2} \hat{\mathbf{z}}
$$

Clearly, the above expression is independent of z and t. The electromagnetic energy thus flows uniformly and at the constant rate of $E_{x 0}^{2} / Z_{0}$ along the z-axis
f) For a linearly-polarized beam, we will have

$$
\boldsymbol{S}(\boldsymbol{r}, t)=Z_{0}^{-1}\left(E_{x 0}^{2}+E_{y 0}^{2}\right) \cos ^{2}\left(k_{0} z-\omega t+\varphi_{x 0}\right) \hat{\mathbf{z}}
$$

The above \boldsymbol{S} obviously varies with both z and t. This means that at any given time, say, $t=t_{0}$, the energy crossing a plane perpendicular to the z-axis at z_{1} is different from the energy crossing another perpendicular plane at z_{2}. Conservation of energy is not violated, however, because, unlike the case of circular-polarization, the energy stored in the E and H fields in the region between z_{1} and z_{2} is not constant in this case. Recall that Poynting's theorem in free-space requires that $\boldsymbol{\nabla} \cdot \boldsymbol{S}+\partial\left(1 / 2 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}+1 / 2 \mu_{0} \boldsymbol{H} \cdot \boldsymbol{H}\right) / \partial t=0$. Consequently, the difference between the energy entering at $z=z_{1}$ and the energy leaving at $z=z_{2}$ is given to (or taken away from) the energy stored in the E and H fields in the space between z_{1} and z_{2}.

Solution to Problem 2:

a) In the free-space region, the incident k-vector is $\boldsymbol{k}^{(i)}=(\omega / c)(\sin \theta \widehat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}})$. The E and H fields may then be written in terms of $\boldsymbol{k}^{(i)}, \omega$, and the E-field amplitude E_{0}, as follows:

$$
\begin{gathered}
\boldsymbol{E}^{(i)}(\boldsymbol{r}, t)=\operatorname{Re}\left\{E_{0}(\cos \theta \widehat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}) \exp \left[i\left(\boldsymbol{k}^{(i)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\}, \\
\boldsymbol{H}^{(i)}(\boldsymbol{r}, t)=\operatorname{Re}\left\{Z_{0}^{-1} E_{0} \widehat{\boldsymbol{y}} \exp \left[i\left(\boldsymbol{k}^{(i)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} .
\end{gathered}
$$

b) For the reflected beam, the k-vector is $\boldsymbol{k}^{(r)}=(\omega / c)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}})$, and the E and H fields, expressed as functions of $\boldsymbol{k}^{(r)}, \omega$, the Fresnel reflection coefficient ρ_{p}, and the incident E field amplitude E_{0}, are

$$
\begin{gathered}
\boldsymbol{E}^{(r)}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\rho_{p} E_{0}(\cos \theta \widehat{\boldsymbol{x}}+\sin \theta \widehat{\mathbf{z}}) \exp \left[i\left(\boldsymbol{k}^{(r)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\}, \\
\boldsymbol{H}^{(r)}(\boldsymbol{r}, t)=-\operatorname{Re}\left\{Z_{0}^{-1} \rho_{p} E_{0} \widehat{\boldsymbol{y}} \exp \left[i\left(\boldsymbol{k}^{(r)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} .
\end{gathered}
$$

c) For the transmitted beam, the k-vector is $\boldsymbol{k}^{(t)}=(\omega / c)\left[\sin \theta \hat{\boldsymbol{x}}+\sqrt{\varepsilon(\omega)-\sin ^{2} \theta} \hat{\mathbf{z}}\right]$. This is derived from the continuity of k_{x} across the interface, and from the dispersion relation of the plasma, namely, $k_{x}^{2}+k_{z}^{2}=(\omega / c)^{2} \mu(\omega) \varepsilon(\omega)$. The E and H fields, written in terms of $\boldsymbol{k}^{(t)}, \omega$, the Fresnel transmission coefficient τ_{p}, and the incident E-field amplitude E_{0}, are

$$
\begin{gathered}
\boldsymbol{E}^{(t)}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\tau_{p} E_{0} \cos \theta\left(\widehat{\boldsymbol{x}}-\frac{\sin \theta}{\sqrt{\varepsilon(\omega)-\sin ^{2} \theta}} \hat{\boldsymbol{z}}\right) \exp \left[i\left(\boldsymbol{k}^{(t)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\}, \\
\boldsymbol{H}^{(t)}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\frac{\tau_{p} \varepsilon(\omega) E_{0} \cos \theta}{z_{0} \sqrt{\varepsilon(\omega)-\sin ^{2} \theta}} \widehat{\boldsymbol{y}} \exp \left[i\left(\boldsymbol{k}^{(t)} \cdot \boldsymbol{r}-\omega t\right)\right]\right\} .
\end{gathered}
$$

In deriving the above expressions, we used the constraints imposed by Maxwell's $1^{\text {st }}$ and $3^{\text {rd }}$ equations, namely, $\boldsymbol{k}^{(t)} \cdot \boldsymbol{E}^{(t)}=k_{x}^{(t)} E_{x}^{(t)}+k_{z}^{(t)} E_{z}^{(t)}=0$ and $\boldsymbol{k}^{(t)} \times \boldsymbol{E}^{(t)}=\mu_{0} \mu(\omega) \omega \boldsymbol{H}^{(t)}$.
d) The tangential components $E_{x}^{(i)}, E_{x}^{(r)}, E_{x}^{(t)}$ of the E-field must satisfy the continuity condition at the interface, as do the tangential components $H_{y}^{(i)}, H_{y}^{(r)}, H_{y}^{(t)}$ of the H-field. Therefore,
$\boldsymbol{E}_{\|}$continuity: $E_{0} \cos \theta+\rho_{p} E_{0} \cos \theta=\tau_{p} E_{0} \cos \theta \quad \rightarrow \quad 1+\rho_{p}=\tau_{p}$.
$\boldsymbol{H}_{\|}$continuity: $Z_{0}^{-1} E_{0}-Z_{0}^{-1} \rho_{p} E_{0}=\frac{\tau_{p} \varepsilon(\omega) E_{0} \cos \theta}{Z_{0} \sqrt{\varepsilon(\omega)-\sin ^{2} \theta}} \quad \rightarrow \quad 1-\rho_{p}=\frac{\tau_{p} \varepsilon(\omega) \cos \theta}{\sqrt{\varepsilon(\omega)-\sin ^{2} \theta}}$.
Solving the above equations, we find $\rho_{p}=\frac{\sqrt{\varepsilon(\omega)-\sin ^{2} \theta}-\varepsilon(\omega) \cos \theta}{\sqrt{\varepsilon(\omega)-\sin ^{2} \theta}+\varepsilon(\omega) \cos \theta}$ and $\tau_{p}=\frac{2 \sqrt{\varepsilon(\omega)-\sin ^{2} \theta}}{\sqrt{\varepsilon(\omega)-\sin ^{2} \theta}+\varepsilon(\omega) \cos \theta}$.
e) Since $\varepsilon(\omega)$ is real-valued and negative, ρ_{p} may be written as follows:

$$
\rho_{p}=\frac{i \sqrt{|\varepsilon(\omega)|+\sin ^{2} \theta}+|\varepsilon(\omega)| \cos \theta}{i \sqrt{|\varepsilon(\omega)|+\sin ^{2} \theta}-|\varepsilon(\omega)| \cos \theta}
$$

Thus ρ_{p} is seen to be the ratio of a complex number to its conjugate, which has a magnitude of 1 . Since $\left|\rho_{p}\right|=1$, the reflectivity is 100%. This does not contradict the existence of electromagnetic waves within the plasma, because the time-averaged Poynting vector of the plane-wave inside the plasma, like that of an evanescent wave, has a vanishing z-component.

