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Spring 2013 Opti 501 
Solutions to Written Comprehensive Exam Problems 

Solution to Problem 1) a) The E-field energy-density is ½εo |E |2. Since the E-field oscillates 
with frequency ωo, time-averaging yields the average E-field energy-density as o 0

21
4 Eε . 

Multiplying this into the volume cTA of the pulse, we obtain the E-field energy of the pulse as 

o 0
21

4 .cTAEε  Similarly, the amplitude of the H-field of the light is 0 0 o/ .H E Z=  Since the time-

averaged magnetic energy density in vacuum is given by o 0 o 0
2 21 1

4 4 ,H Eµ ε=  the magnetic energy 

of the pulse is equal to its electric energy. The total energy is thus given by o 0
21

2 .cTAEε  
Alternatively, we may compute the time-averaged Poynting vector as follows: 
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This is the rate of flow of energy per unit area per unit time at any given cross-section of the 
light pulse. Multiplication with A and T then yields the total energy of the pulse as 2

0 o/(2 ).ATE Z  
Considering that εoc =1/Zo, the two expressions obtained above for the total pulse energy are 
exactly the same. 

b) The reflected pulse has the same frequency ωo and the same wavelength λo=2πc/ωo as the 
incident pulse. Its polarization state is also linear and in the same direction as the incident 
polarization. The pulse duration and cross-sectional area remain T and A, respectively. The only 
things that change are the field amplitudes Eo and Ho, which are multiplied by the Fresnel 
reflection coefficient ρ =(1−n)/(1+n). The reflected pulse energy is therefore given by ρ 2 times 
the incident pulse energy, that is, 0 o

2 2 2(1 ) / 2 (1 ) .[ ]n ATE Z n− +  

c) The Fresnel transmission coefficient at the entrance facet of the glass slab is 
τ =1+ρ =2/(1+n). This means that the E-field amplitude inside the glass slab is 2E0/(1+n). The 
H-field amplitude is n times the E-field amplitude divided by Zo, that is, H0=2nE0/[Zo(1+n)]. 
Therefore, the z-component of the Poynting vector inside the slab is 2 2

0 o2 /[ (1 ) ].zS nE Z n< > = +  
Since the pulse duration T and the cross-sectional area A inside the slab remain the same as 
outside, the total energy of the transmitted pulse is 0 o

2 22 /[ (1 ) ].nATE Z n+  Other properties of the 
transmitted pulse are: frequency=ωo, wavelength λ=λo/n, pulse length=cT/n, polarization state = 
linear and in the same direction as the incident pulse. 

Alternatively, one may evaluate the energy densities of the E and H fields separately, then 
add them together. We find  

Time-averaged E-field energy density = 0o oo 0 0
2 2 2 2 2 21 1

4 4( ) [2 /( / .1 1 ))] (E n n nE Enε ε ε ετ = + = +  

Time-averaged H-field energy density = o 0 o o 0 o o 0
2 22 221 1
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Adding the above energy densities, then multiplying by the pulse volume cAT/n yields the 
same result as before, namely, transmitted pulse energy = 2 2

o 02 /(1 ) .cnATE nε +   
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d) Reflected plus transmitted pulse energy = 

0 0 o 0 oo
2 2 2 2 22(1 ) / 2 (1 ) 2 /(2 )./ (1 )[ ] [ ]n ATE Z n nATE Z ATn E Z− + + + =  

This is the same as the incident pulse energy; therefore, energy is conserved. 
 
Solution to Problem 2) a) There are four sources in classical electrodynamics that are generally 
associated with material media and described as continuous functions of the space-time 
coordinates, r and t. These are: (i) free charge density ρfree(r,t), (ii) free current density Jfree(r,t), 
(iii) polarization P(r,t), and magnetization M(r,t). While ρfree is a scalar entity, the other three 
sources are vectorial in nature. ρfree(r,t) is the electrical charge (e.g., that of electrons and 
protons) per unit volume at a given point in space-time. Jfree(r,t) is the electrical current density 
(i.e., charge crossing unit area per unit time) produced by the motion of free charges. P(r,t) is the 
density of electric dipoles (i.e., dipole moment per unit volume), and M(r,t) is the density of 
magnetic dipoles at a given point in space-time. 

b) There are four fields in the classical theory: (i) electric field E(r,t), (ii) electric displacement 
D(r,t), (iii) magnetic field H(r,t), and (iv) magnetic induction B(r,t). The fields are generally 
described as continuous functions of the space-time coordinates. E and H may be thought of as 
pure fields, lacking some of the characteristics that one normally associates with material media, 
such as mass. In contrast, D and B are composite fields defined by the identities 

o( , ) ( , ) ( , )t t tε= +D r E r P r  and o( , ) ( , ) ( , ),t t tµ= +B r H r M r  where εo and µo are the 
permittivity and permeability of free space, respectively. All four fields are vectorial in nature. 

c) Starting with Maxwell’s 2nd equation, one applies the divergence operator to both sides of the 
equation to arrive at free( ) ( / )t∂ ∂ .⋅ × = ⋅ + ⋅H J D∇ ∇ ∇ ∇  Since the divergence of the curl of any 
vector field is always equal to zero, the left-hand-side of the above equation may be set to zero. 
On the right-hand side, the divergence operator goes inside the time-derivative operator to yield 

( )/ .t∂ ∂⋅D∇  From Maxwell’s 1st equation we have free.ρ⋅ =D∇  Substitution into the preceding 
equation then yields free free( / ) 0,t∂ρ ∂⋅ + =J∇  which is the sought after continuity equation. 

d) The polarization and magnetization appearing in Maxwell’s equations may be replaced by 
equivalent bound-charge and bound-current densities. In Maxwell’s 1st equation, substituting 
εoE +P for D and moving ⋅P∇  to the right-hand-side yields o free .ε ρ⋅ − ⋅E = P∇ ∇  This indicates 
that the bound electric charge density associated with P is (e)

bound .ρ = − ⋅P∇  Similarly, one can 
substitute for H and D in Maxwell’s 2nd equation in terms of B and E to arrive at 

1
o free o o o[ ( / ) ] ( / ).t tµ ∂ ∂ µ µ ε ∂ ∂−× = + + × +B J P M E∇ ∇  The terms bundled together with Jfree on 

the right-hand-side of the preceding equation then represent the bound electric current density 
(e)
boundJ  associated with polarization ( / ),t∂ ∂P  and with magnetization 1

o( ).µ− ×M∇  
Alternatively, one may leave the 1st and 2nd equations intact, and modify the 3rd and 4th 

equations of Maxwell by substituting for E and B in terms of D and H. One will find 
1

o o o o[( / ) ] ( / ),t tε ∂ ∂ ε µ ε ∂ ∂−× = − − × −D M P H∇ ∇  
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o .µ ⋅ = − ⋅H M∇ ∇  

The above equations reveal that the magnetization M may be replaced by a bound magnetic 
charge-density (m)

boundρ = − ⋅M∇  and a bound magnetic current-density (m)
bound / .t∂ ∂=J M  Similarly, 

the polarization P may be replaced by (m) 1
bound o .ε −= − ×J P∇  

e) In the case of electric bound charge and current densities we have 
(e) (e)
bound b

(e) 1 (e)
bound o bound ound( / ) ( ) ( )/ / / 0.tt t t∂ ∂ µ ∂ ∂ ∂ρ ∂ ∂ρ ∂−⋅ = ⋅ + ⋅ × = ⋅ = ⋅ + =− →J P M P J∇ ∇ ∇ ∇ ∇ ∇  

In the case of magnetic bound charge and current densities we have 
(m) (m)
bound b

(m) 1 (m)
bound o bound ound( / ) ( ) ( )/ / / 0.tt t t∂ ∂ ε ∂ ∂ ∂ρ ∂ ∂ρ ∂−⋅ = ⋅ − ⋅ × = ⋅ = ⋅ + =− →J M P M J∇ ∇ ∇ ∇ ∇ ∇  

Clearly, both systems of bound charge and current satisfy the charge-current continuity equation. 
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