Spring 2013 Opti 501

Solutions to Written Comprehensive Exam Problems

Solution to Problem 1) a) The *E*-field energy-density is $\frac{1}{2}\varepsilon_0 |E|^2$. Since the *E*-field oscillates with frequency ω_0 , time-averaging yields the average *E*-field energy-density as $\frac{1}{4}\varepsilon_0 E_0^2$. Multiplying this into the volume *cTA* of the pulse, we obtain the *E*-field energy of the pulse as $\frac{1}{4}\varepsilon_0 cTAE_0^2$. Similarly, the amplitude of the *H*-field of the light is $H_0 = E_0/Z_0$. Since the time-averaged magnetic energy density in vacuum is given by $\frac{1}{4}\mu_0H_0^2 = \frac{1}{4}\varepsilon_0E_0^2$, the magnetic energy of the pulse is equal to its electric energy. The total energy is thus given by $\frac{1}{2}\varepsilon_0 cTAE_0^2$.

Alternatively, we may compute the time-averaged Poynting vector as follows:

$$< S > = \frac{1}{2} \operatorname{Re}(E \times H^*) = \frac{1}{2} E_0 H_0 \hat{z} = [E_0^2 / (2Z_0)] \hat{z}.$$

This is the rate of flow of energy per unit area per unit time at any given cross-section of the light pulse. Multiplication with A and T then yields the total energy of the pulse as $ATE_0^2/(2Z_o)$. Considering that $\varepsilon_0 c = 1/Z_0$, the two expressions obtained above for the total pulse energy are exactly the same.

b) The reflected pulse has the same frequency ω_0 and the same wavelength $\lambda_0 = 2\pi c/\omega_0$ as the incident pulse. Its polarization state is also linear and in the same direction as the incident polarization. The pulse duration and cross-sectional area remain *T* and *A*, respectively. The only things that change are the field amplitudes E_0 and H_0 , which are multiplied by the Fresnel reflection coefficient $\rho = (1-n)/(1+n)$. The reflected pulse energy is therefore given by ρ^2 times the incident pulse energy, that is, $(1-n)^2 A T E_0^2 / [2Z_0(1+n)^2]$.

c) The Fresnel transmission coefficient at the entrance facet of the glass slab is $\tau = 1 + \rho = 2/(1+n)$. This means that the *E*-field amplitude inside the glass slab is $2E_0/(1+n)$. The *H*-field amplitude is *n* times the *E*-field amplitude divided by Z_0 , that is, $H_0 = 2nE_0/[Z_0(1+n)]$. Therefore, the *z*-component of the Poynting vector inside the slab is $\langle S_z \rangle = 2nE_0^2/[Z_0(1+n)^2]$. Since the pulse duration *T* and the cross-sectional area *A* inside the slab remain the same as outside, the total energy of the transmitted pulse is $2nATE_0^2/[Z_0(1+n)^2]$. Other properties of the transmitted pulse are: frequency= ω_0 , wavelength $\lambda = \lambda_0/n$, pulse length=cT/n, polarization state = linear and in the same direction as the incident pulse.

Alternatively, one may evaluate the energy densities of the E and H fields separately, then add them together. We find

Time-averaged *E*-field energy density $= \frac{1}{4}\varepsilon_o \varepsilon(\tau E_0)^2 = \frac{1}{4}\varepsilon_o n^2 [2E_0/(1+n)]^2 = \varepsilon_o n^2 E_0^2/(1+n)^2$. Time-averaged *H*-field energy density $= \frac{1}{4}\mu_o(n\tau E_0/Z_o)^2 = \frac{1}{4}\mu_o\{2nE_0/[Z_o(1+n)]\}^2 = \varepsilon_o n^2 E_0^2/(1+n)^2$.

Adding the above energy densities, then multiplying by the pulse volume cAT/n yields the same result as before, namely, transmitted pulse energy $= 2\varepsilon_0 c nATE_0^2/(1+n)^2$.

d) Reflected plus transmitted pulse energy =

$$(1-n)^2 ATE_0^2 / [2Z_0(1+n)^2] + 2nATE_0^2 / [Z_0(1+n)^2] = ATE_0^2 / (2Z_0).$$

This is the same as the incident pulse energy; therefore, energy is conserved.

Solution to Problem 2) a) There are four sources in classical electrodynamics that are generally associated with material media and described as continuous functions of the space-time coordinates, \mathbf{r} and t. These are: (i) free charge density $\rho_{\text{free}}(\mathbf{r},t)$, (ii) free current density $\mathbf{J}_{\text{free}}(\mathbf{r},t)$, (iii) polarization $\mathbf{P}(\mathbf{r},t)$, and magnetization $\mathbf{M}(\mathbf{r},t)$. While ρ_{free} is a scalar entity, the other three sources are vectorial in nature. $\rho_{\text{free}}(\mathbf{r},t)$ is the electrical charge (e.g., that of electrons and protons) per unit volume at a given point in space-time. $\mathbf{J}_{\text{free}}(\mathbf{r},t)$ is the electrical current density (i.e., charge crossing unit area per unit time) produced by the motion of free charges. $\mathbf{P}(\mathbf{r},t)$ is the density of electric dipoles (i.e., dipole moment per unit volume), and $\mathbf{M}(\mathbf{r},t)$ is the density of magnetic dipoles at a given point in space-time.

b) There are four fields in the classical theory: (i) electric field E(r,t), (ii) electric displacement D(r,t), (iii) magnetic field H(r,t), and (iv) magnetic induction B(r,t). The fields are generally described as continuous functions of the space-time coordinates. E and H may be thought of as pure fields, lacking some of the characteristics that one normally associates with material media, such as mass. In contrast, D and B are composite fields defined by the identities $D(r,t) = \varepsilon_0 E(r,t) + P(r,t)$ and $B(r,t) = \mu_0 H(r,t) + M(r,t)$, where ε_0 and μ_0 are the permittivity and permeability of free space, respectively. All four fields are vectorial in nature.

c) Starting with Maxwell's 2^{nd} equation, one applies the divergence operator to both sides of the equation to arrive at $\nabla \cdot (\nabla \times H) = \nabla \cdot J_{\text{free}} + \nabla \cdot (\partial D/\partial t)$. Since the divergence of the curl of any vector field is always equal to zero, the left-hand-side of the above equation may be set to zero. On the right-hand side, the divergence operator goes inside the time-derivative operator to yield $\partial (\nabla \cdot D)/\partial t$. From Maxwell's 1^{st} equation we have $\nabla \cdot D = \rho_{\text{free}}$. Substitution into the preceding equation then yields $\nabla \cdot J_{\text{free}} + (\partial \rho_{\text{free}}/\partial t) = 0$, which is the sought after continuity equation.

d) The polarization and magnetization appearing in Maxwell's equations may be replaced by equivalent bound-charge and bound-current densities. In Maxwell's 1st equation, substituting $\varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$ for \boldsymbol{D} and moving $\nabla \cdot \boldsymbol{P}$ to the right-hand-side yields $\varepsilon_0 \nabla \cdot \boldsymbol{E} = \rho_{\text{free}} - \nabla \cdot \boldsymbol{P}$. This indicates that the bound electric charge density associated with \boldsymbol{P} is $\rho_{\text{bound}}^{(e)} = -\nabla \cdot \boldsymbol{P}$. Similarly, one can substitute for \boldsymbol{H} and \boldsymbol{D} in Maxwell's 2nd equation in terms of \boldsymbol{B} and \boldsymbol{E} to arrive at $\nabla \times \boldsymbol{B} = \mu_0 [\boldsymbol{J}_{\text{free}} + (\partial \boldsymbol{P}/\partial t) + \mu_0^{-1} \nabla \times \boldsymbol{M}] + \mu_0 \varepsilon_0 (\partial \boldsymbol{E}/\partial t)$. The terms bundled together with $\boldsymbol{J}_{\text{free}}$ on the right-hand-side of the preceding equation then represent the bound electric current density $\boldsymbol{J}_{\text{bound}}^{(e)}$ associated with polarization $(\partial \boldsymbol{P}/\partial t)$, and with magnetization $(\mu_0^{-1} \nabla \times \boldsymbol{M})$.

Alternatively, one may leave the 1^{st} and 2^{nd} equations intact, and modify the 3^{rd} and 4^{th} equations of Maxwell by substituting for *E* and *B* in terms of *D* and *H*. One will find

$$\nabla \times \boldsymbol{D} = -\varepsilon_{o} [(\partial \boldsymbol{M} / \partial t) - \varepsilon_{o}^{-1} \nabla \times \boldsymbol{P}] - \mu_{o} \varepsilon_{o} (\partial \boldsymbol{H} / \partial t),$$

$\mu_{\mathbf{0}} \nabla \cdot \boldsymbol{H} = -\nabla \cdot \boldsymbol{M}.$

The above equations reveal that the magnetization \boldsymbol{M} may be replaced by a bound magnetic charge-density $\rho_{\text{bound}}^{(\text{m})} = -\boldsymbol{\nabla} \cdot \boldsymbol{M}$ and a bound magnetic current-density $\boldsymbol{J}_{\text{bound}}^{(\text{m})} = \partial \boldsymbol{M} / \partial t$. Similarly, the polarization \boldsymbol{P} may be replaced by $\boldsymbol{J}_{\text{bound}}^{(\text{m})} = -\varepsilon_{o}^{-1}\boldsymbol{\nabla} \times \boldsymbol{P}$.

e) In the case of electric bound charge and current densities we have

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text{bound}}^{(e)} = \boldsymbol{\nabla} \cdot (\partial \boldsymbol{P} / \partial t) + \mu_{o}^{-1} \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \times \boldsymbol{M}) = \partial (\boldsymbol{\nabla} \cdot \boldsymbol{P}) / \partial t = -\partial \rho_{\text{bound}}^{(e)} / \partial t \quad \rightarrow \quad \boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text{bound}}^{(e)} + \partial \rho_{\text{bound}}^{(e)} / \partial t = 0.$$

In the case of magnetic bound charge and current densities we have

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text{bound}}^{(m)} = \boldsymbol{\nabla} \cdot (\partial \boldsymbol{M} / \partial t) - \boldsymbol{\varepsilon}_{o}^{-1} \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \times \boldsymbol{P}) = \partial (\boldsymbol{\nabla} \cdot \boldsymbol{M}) / \partial t = -\partial \rho_{\text{bound}}^{(m)} / \partial t \quad \rightarrow \quad \boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text{bound}}^{(m)} + \partial \rho_{\text{bound}}^{(m)} / \partial t = 0.$$

Clearly, both systems of bound charge and current satisfy the charge-current continuity equation.