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Solution to Problem 1) 

a) free( , ) ( , ),t tρ⋅ =D r r∇  

 free
( , )( , ) ( , ) ,tt t
t

∂
∂

× = +
D rH r J r∇  

 ( , )( , ) ,tt
t

∂
∂

× = −
B rE r∇  

 ( , ) 0.t⋅ =B r∇  

In the above equations, ˆ ˆ ˆx y z= + +r x y z  is an arbitrary point in space, while t is an arbitrary 
instant in time. E is the electric field, H is the magnetic field, D is the displacement, and B is the 
magnetic induction. The fields are related to each other, to the permittivity and permeability of 
free space, εo and μo, and to polarization P and magnetization M as follows 

 o( , ) ( , ) ( , ),t t tε= +D r E r P r  

 o( , ) ( , ) ( , ).t t tμ= +B r H r M r  

The sources of the electromagnetic fields (namely, E and H) are the free charge density ρfree, 
free current density Jfree, polarization P (which is the density of electric dipole moments), and 
magnetization M (which is the density of magnetic dipole moments). The operator ∂ /∂ t 
represents partial differentiation with respect to time, ∇ ⋅  is the divergence operator, and ∇× is 
the curl operator. The divergence of a vector field such as D(r, t), which turns out to be a scalar 
field, is defined as the integral of D(r, t) over a small closed surface, normalized by the enclosed 
volume. The curl of a vector field such as E(r, t), which turns out to be another vector field, when 
projected onto the surface normal of a small surface element, yields the line integral of E(r, t) 
around the boundary of the small surface element, normalized by the surface area of the element. 
 
b) To derive the charge-current continuity equation from Maxwell’s equations, apply the 
divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of 
curl is always equal to zero and, therefore, the left-hand-side of the equation becomes 

( ) 0.⋅ × =H∇ ∇  The right-hand side, free ( ) ,t∂ ∂⋅ + ⋅J D /∇ ∇  thus becomes zero. Maxwell’s first 
equation (Gauss’s law) now allows one to replace ⋅D∇  with ρ free, yielding the continuity 
equation as free free/ 0.t∂ρ ∂⋅ + =J∇  This equation informs that the integrated free current over any 
closed surface is precisely balanced by changes in the electrical charge contained within the 
closed surface. If there is a net outflow of the current, the charge within the closed surface must 
be decreasing, and if there is a net inflow of current, the charge within must be increasing. 
 
c) In the first of Maxwell’s equations, we substitute oε= +D E P  and obtain 

( )
o free o free o free bound( ) .eε ρ ε ρ ε ρ ρ⋅ + = → ⋅ = − ⋅ → ⋅ = +E P E P E∇ ∇ ∇ ∇  

The bound-charge density is thus seen to be ( )
bound( , ) ( , ).e t tρ = − ⋅r P r∇  
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In the second Maxwell equation, we multiply both sides by μo, then add ×M∇  to both 
sides, in order to replace H with B through the identity o .μ= +B H M  We also use oε= +D E P  
on the right-hand side of the equation to get rid of D. We will have 
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The bound electric current density is thus found to be ( ) 1
bound o/ .e t∂ ∂ μ−= + ×J P M∇  Since the 

remaining Maxwell equations do not contain D and H, they remain unchanged. 
 
d) The divergence of ( )

bound
eJ is readily obtained as follows: 

( ) 1
bound o( )/ ( ).e t∂ ∂ μ−⋅ = ⋅ + ⋅ ×J P M∇ ∇ ∇ ∇  

On the right-hand side of the above equation, the divergence of curl is always zero. Also the 
divergence of P(r, t) is, by definition, ( )

bound.eρ−  Therefore, ( ) ( )
bound bound / 0.e e t∂ρ ∂⋅ + =J∇  This is the 

charge-current continuity equation for the bound electrical charge and current defined in part (c). 
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Solution to Problem 2)  

a) 1 o 1 1 1 ˆ( , ) cos[ ( )( / ) ] ,t E n c z tω ω ω= −E r x  (1a) 

 1
1 1 o o 1 1 1 ˆ( , ) ( ) cos[ ( )( / ) ] .t n Z E n c z tω ω ω ω−= −H r y  (1b) 

Similarly, 

 2 o 2 2 2 ˆ( , ) cos[ ( )( / ) ] ,t E n c z tω ω ω= −E r x  (2a) 

 1
2 2 o o 2 2 2 ˆ( , ) ( ) cos[ ( )( / ) ] .t n Z E n c z tω ω ω ω−= −H r y  (2b) 

Here c = 1/√μoεo is the speed of light in vacuum, while Zo =√μo/εo is the impedance of free space. 
 
b) The rate of flow of electromagnetic (EM) energy is given by the Poynting vector, as follows: 
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c) In the preceding expression, the terms with frequencies 2ω1, 2ω2, and (ω1+ω2) are rapidly-
oscillating functions of time which quickly average to zero. The first term, however, is a 
constant, and the last term, which varies slowly with time, co-propagates with the envelope of 
the beat signal. Dropping the rapidly-oscillating terms, we will have 
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 (4) 

In the above equation, the rate-of-flow of the beat signal’s EM energy is seen to travel along 
the z-axis at the constant velocity c/ng, where ng = d[ωn(ω)]/dω |ω =ωo is the group refractive index 
of the medium at the center frequency ωo of the beat signal. The energy flow-rate is thus seen to 
propagate along the z-axis at the group velocity Vg = c/ng. Note that the final expression obtained 
in Eq.(4) is positive everywhere, whereas the rapidly-oscillating terms that were dropped from 
Eq.(3) keep switching direction (between +z and –z) at very high frequencies. 
 


