Opti 501 Prelim. Spring 2012

Solution to Problem 1)

a)

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \boldsymbol{D}(\boldsymbol{r}, t)=\rho_{\text {free }}(\boldsymbol{r}, t) \\
& \boldsymbol{\nabla} \times \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{J}_{\text {free }}(\boldsymbol{r}, t)+\frac{\partial \boldsymbol{D}(\boldsymbol{r}, t)}{\partial t}, \\
& \boldsymbol{\nabla} \times \boldsymbol{E}(\boldsymbol{r}, t)=-\frac{\partial \boldsymbol{B}(\boldsymbol{r}, t)}{\partial t} \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}(\boldsymbol{r}, t)=0
\end{aligned}
$$

In the above equations, $\boldsymbol{r}=x \hat{\boldsymbol{x}}+y \hat{\boldsymbol{y}}+z \hat{\mathbf{z}}$ is an arbitrary point in space, while t is an arbitrary instant in time. \boldsymbol{E} is the electric field, \boldsymbol{H} is the magnetic field, \boldsymbol{D} is the displacement, and \boldsymbol{B} is the magnetic induction. The fields are related to each other, to the permittivity and permeability of free space, ε_{0} and μ_{0}, and to polarization \boldsymbol{P} and magnetization \boldsymbol{M} as follows

$$
\begin{aligned}
& \boldsymbol{D}(\boldsymbol{r}, t)=\varepsilon_{0} \boldsymbol{E}(\boldsymbol{r}, t)+\boldsymbol{P}(\boldsymbol{r}, t), \\
& \boldsymbol{B}(\boldsymbol{r}, t)=\mu_{0} \boldsymbol{H}(\boldsymbol{r}, t)+\boldsymbol{M}(\boldsymbol{r}, t) .
\end{aligned}
$$

The sources of the electromagnetic fields (namely, \boldsymbol{E} and \boldsymbol{H}) are the free charge density $\rho_{\text {free }}$, free current density $\boldsymbol{J}_{\text {free }}$, polarization \boldsymbol{P} (which is the density of electric dipole moments), and magnetization \boldsymbol{M} (which is the density of magnetic dipole moments). The operator $\partial l \partial t$ represents partial differentiation with respect to time, ∇. is the divergence operator, and $\nabla \times$ is the curl operator. The divergence of a vector field such as $\boldsymbol{D}(\boldsymbol{r}, t)$, which turns out to be a scalar field, is defined as the integral of $\boldsymbol{D}(\boldsymbol{r}, t)$ over a small closed surface, normalized by the enclosed volume. The curl of a vector field such as $\boldsymbol{E}(\boldsymbol{r}, t)$, which turns out to be another vector field, when projected onto the surface normal of a small surface element, yields the line integral of $\boldsymbol{E}(\boldsymbol{r}, t)$ around the boundary of the small surface element, normalized by the surface area of the element.
b) To derive the charge-current continuity equation from Maxwell's equations, apply the divergence operator to both sides of the second (Maxwell-Ampere) equation. The divergence of curl is always equal to zero and, therefore, the left-hand-side of the equation becomes $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{H})=0$. The right-hand side, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {free }}+\partial(\boldsymbol{\nabla} \cdot \boldsymbol{D}) / \partial t$, thus becomes zero. Maxwell's first equation (Gauss's law) now allows one to replace $\boldsymbol{\nabla} \cdot \boldsymbol{D}$ with $\rho_{\text {free }}$, yielding the continuity equation as $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {free }}+\partial \rho_{\text {friee }} / \partial t=0$. This equation informs that the integrated free current over any closed surface is precisely balanced by changes in the electrical charge contained within the closed surface. If there is a net outflow of the current, the charge within the closed surface must be decreasing, and if there is a net inflow of current, the charge within must be increasing.
c) In the first of Maxwell's equations, we substitute $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$ and obtain

$$
\boldsymbol{\nabla} \cdot\left(\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}\right)=\rho_{\text {free }} \rightarrow \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{\text {free }}-\boldsymbol{\nabla} \cdot \boldsymbol{P} \rightarrow \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{\text {free }}+\rho_{\text {bound }}^{(e)} .
$$

The bound-charge density is thus seen to be $\rho_{\text {bound }}^{(e)}(\boldsymbol{r}, t)=-\boldsymbol{\nabla} \cdot \boldsymbol{P}(\boldsymbol{r}, t)$.

In the second Maxwell equation, we multiply both sides by μ_{0}, then add $\boldsymbol{\nabla} \times \boldsymbol{M}$ to both sides, in order to replace \boldsymbol{H} with \boldsymbol{B} through the identity $\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\boldsymbol{M}$. We also use $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$ on the right-hand side of the equation to get rid of \boldsymbol{D}. We will have

$$
\begin{aligned}
& \mu_{0} \boldsymbol{\nabla} \times \boldsymbol{H}+\boldsymbol{\nabla} \times \boldsymbol{M}=\mu_{0} \boldsymbol{J}_{\text {friee }}+\mu_{\mathrm{o}} \frac{\partial\left(\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}\right)}{\partial t}+\boldsymbol{\nabla} \times \boldsymbol{M} \\
& \rightarrow \quad \nabla \times \boldsymbol{B}=\mu_{0}\left(\boldsymbol{J}_{\text {friee }}+\partial \boldsymbol{P} / \partial t+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}\right)+\mu_{0} \varepsilon_{0} \partial \boldsymbol{E} / \partial t \\
& \rightarrow \quad \nabla \times \boldsymbol{B}=\mu_{\mathrm{o}}\left(\boldsymbol{J}_{\text {friee }}+\boldsymbol{J}_{\text {bound }}^{(e)}\right)+\mu_{0} \varepsilon_{0} \partial \boldsymbol{E} / \partial t .
\end{aligned}
$$

The bound electric current density is thus found to be $\boldsymbol{J}_{\text {bound }}^{(e)}=\partial \boldsymbol{P} / \partial t+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}$. Since the remaining Maxwell equations do not contain \boldsymbol{D} and \boldsymbol{H}, they remain unchanged.
d) The divergence of $\boldsymbol{J}_{\text {bound }}^{(e)}$ is readily obtained as follows:

$$
\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {bound }}^{(e)}=\partial(\boldsymbol{\nabla} \cdot \boldsymbol{P}) / \partial t+\mu_{\mathrm{o}}^{-1} \boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{M}) .
$$

On the right-hand side of the above equation, the divergence of curl is always zero. Also the divergence of $\boldsymbol{P}(\boldsymbol{r}, t)$ is, by definition, $-\rho_{\text {bound }}^{(e)}$. Therefore, $\boldsymbol{\nabla} \cdot \boldsymbol{J}_{\text {bound }}^{(e)}+\partial \rho_{\text {bound }}^{(e)} / \partial t=0$. This is the charge-current continuity equation for the bound electrical charge and current defined in part (c).

Opti 501 Prelim. Spring 2012

Solution to Problem 2)

a)

$$
\begin{align*}
& \boldsymbol{E}_{1}(\boldsymbol{r}, t)=E_{0} \cos \left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right] \hat{\boldsymbol{x}}, \tag{1a}\\
& \boldsymbol{H}_{1}(\boldsymbol{r}, t)=n\left(\omega_{1}\right) Z_{0}^{-1} E_{0} \cos \left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right] \hat{\boldsymbol{y}} . \tag{1b}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \boldsymbol{E}_{2}(\boldsymbol{r}, t)=E_{0} \cos \left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right] \hat{\boldsymbol{x}}, \tag{2a}\\
& \boldsymbol{H}_{2}(\boldsymbol{r}, t)=n\left(\omega_{2}\right) Z_{0}^{-1} E_{0} \cos \left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right] \hat{\boldsymbol{y}} . \tag{2b}
\end{align*}
$$

Here $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ is the speed of light in vacuum, while $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ is the impedance of free space.
b) The rate of flow of electromagnetic (EM) energy is given by the Poynting vector, as follows:

$$
\begin{align*}
& \boldsymbol{S}(\boldsymbol{r}, t)=\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)=E_{0}\left\{\cos \left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right]+\cos \left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right]\right\} \hat{\boldsymbol{x}} \\
& \times Z_{0}^{-1} E_{0}\left\{n\left(\omega_{1}\right) \cos \left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right]+n\left(\omega_{2}\right) \cos \left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right]\right\} \hat{\boldsymbol{y}} \\
&=Z_{0}^{-1} E_{0}^{2}\left\{n\left(\omega_{1}\right) \cos ^{2}\left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right]+n\left(\omega_{2}\right) \cos ^{2}\left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right]\right. \\
&\left.+\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right] \cos \left[n\left(\omega_{1}\right)\left(\omega_{1} / c\right) z-\omega_{1} t\right] \cos \left[n\left(\omega_{2}\right)\left(\omega_{2} / c\right) z-\omega_{2} t\right]\right\} \hat{\mathbf{z}} \\
&=\frac{1}{2} Z_{0}^{-1} E_{0}^{2}\{ {\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right]+n\left(\omega_{1}\right) \cos \left[2 \omega_{1} n\left(\omega_{1}\right)(z / c)-2 \omega_{1} t\right]+n\left(\omega_{2}\right) \cos \left[2 \omega_{2} n\left(\omega_{2}\right)(z / c)-2 \omega_{2} t\right] } \\
&+\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right] \cos \left\{\left[\omega_{1} n\left(\omega_{1}\right)+\omega_{2} n\left(\omega_{2}\right)\right](z / c)-\left(\omega_{1}+\omega_{2}\right) t\right\} \\
&\left.+\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right] \cos \left\{\left[\omega_{1} n\left(\omega_{1}\right)-\omega_{2} n\left(\omega_{2}\right)\right](z / c)-\left(\omega_{1}-\omega_{2}\right) t\right\}\right\} \hat{\mathbf{z}} \tag{3}
\end{align*}
$$

c) In the preceding expression, the terms with frequencies $2 \omega_{1}, 2 \omega_{2}$, and ($\omega_{1}+\omega_{2}$) are rapidlyoscillating functions of time which quickly average to zero. The first term, however, is a constant, and the last term, which varies slowly with time, co-propagates with the envelope of the beat signal. Dropping the rapidly-oscillating terms, we will have

$$
\begin{align*}
S_{z}(\boldsymbol{r}, t) & \approx \frac{1}{2}\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right] Z_{o}^{-1} E_{o}^{2}\left\{1+\cos \left\{\left[\omega_{2} n\left(\omega_{2}\right)-\omega_{1} n\left(\omega_{1}\right)\right](z / c)-\left(\omega_{2}-\omega_{1}\right) t\right\}\right\} \\
& \approx\left[n\left(\omega_{1}\right)+n\left(\omega_{2}\right)\right] Z_{o}^{-1} E_{o}^{2} \cos ^{2}\left\{\frac{1}{2} \Delta \omega\left(\left.\frac{\mathrm{~d}[\omega n(\omega)]}{c \mathrm{~d} \omega}\right|_{\omega_{0}} z-t\right)\right\} \tag{4}
\end{align*}
$$

In the above equation, the rate-of-flow of the beat signal's EM energy is seen to travel along the z-axis at the constant velocity c / n_{g}, where $n_{g}=\mathrm{d}[\omega n(\omega)] /\left.\mathrm{d} \omega\right|_{\omega=\omega_{0}}$ is the group refractive index of the medium at the center frequency ω_{0} of the beat signal. The energy flow-rate is thus seen to propagate along the z-axis at the group velocity $V_{g}=c / n_{g}$. Note that the final expression obtained in Eq.(4) is positive everywhere, whereas the rapidly-oscillating terms that were dropped from Eq.(3) keep switching direction (between $+z$ and $-z$) at very high frequencies.

