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Opti 501 Solutions to Prelim Questions Spring 2011 
 
Problem 1) a) The divergence operator ∇ ⋅ acting on the D-field means that the D-field is 
integrated over the surface of a small volume element surrounding an arbitrary point r in space at 
a fixed time t; the integral must subsequently be normalized by the volume of the chosen element 
to yield the divergence of the D-field. According to Maxwell’s 1st equation, the result of this 
operation on the D-field is going to be equal to the density of free charge, ρ free, at that point r in 
space and at that instant t of time. The displacement field D(r, t) is related to the permittivity of 
free space εo , the local E-field E(r, t), and the local polarization P(r, t) as follows: D(r, t) =  
εoE(r, t) + P(r, t). 

The boundary condition associated with Maxwell’s 1st equation states that the discontinuity 
in the perpendicular component D⊥ of the D-field at any given surface or interface must be equal 
to the local surface-charge-density σ free(r, t). Thus at a given point (r, t) in space-time, D⊥(r+, t) 
immediately above the surface minus D⊥(r−, t) immediately below the surface must be equal in 
magnitude to σ free(r, t) at the surface. 
 
b) The curl operator ∇× acting on the H-field means that an arbitrarily small loop must be 
chosen around the point r in space, the integral of the H-field around the loop evaluated, then 
normalized by the surface area of the loop. (The value used for the H-field at all points around 
the loop must be obtained at the same instant of time, t.) According to Maxwell’s 2nd equation, 
the result of the above operation will be equal to the sum of two terms: 

i) the projection, on the surface-normal of the loop, of the local free-current-density, Jfree(r, t); 
ii) the projection, on the surface-normal of the loop, of the time-derivative of the local D(r, t). 

The direction of the aforementioned surface-normal is chosen in accordance with the right-
hand rule, in conjunction with the direction of travel around the loop when evaluating the 
integral of the H-field. The above description of Maxwell’s 2nd equation applies to all small 
loops, irrespective of the shape and/or orientation of the loop. 

The boundary condition associated with Maxwell’s 2nd equation states that the discontinuity 
in the tangential component H|| of the H-field at any given surface or interface must be equal in 
magnitude and perpendicular in direction to the local surface-current-density Js_free(r, t). Thus, at 
a given point (r, t) in space-time, H|| (r+, t) immediately above the surface minus H|| (r−, t) 
immediately below the surface must be equal to Js_free(r, t)×n^ at the surface, where n^ is the 
surface-normal at r. 
 
c) The curl operation was described in part (b) above. The magnetic induction B(r, t) is related to 
the permeability μo of free space, the local H-field H(r, t), and the local magnetization M(r, t) 
through the following relation: B(r, t) =μoH(r, t) + M(r, t). Thus, according to Maxwell’s 3rd 
equation, the integral of the E-field around any small loop surrounding the point r and evaluated 
at time t, when normalized by the area of the loop, will be equal in magnitude and opposite in 
direction to the projection on the surface-normal of the loop of the time-derivative of the local B-
field. The time-derivative of the B-field, of course, is the difference between B(r, t) and 
B(r, t +Δt), normalized by Δt, in the limit with Δt is sufficiently small. 

The boundary condition associated with Maxwell’s 3rd equation states that the tangential 
component E|| of the E-field at any given surface or interface must be continuous. Thus, at a 
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given point (r, t) in space-time, E|| (r+, t) immediately above the surface must be equal to E|| (r−, t) 
immediately below the surface. 
 
d) According to Maxwell’s 4th equation, the divergence of B(r, t) is always and everywhere equal 
to zero, meaning that the integral of B(r, t) over the surface enclosing any volume of space (large 
or small) is identically zero, provided that the B-field at all points on the surface is evaluated at 
the same instant of time, t. Thus, whatever magnetic flux enters the volume, must also leave the 
volume, ensuring that no sources and/or sinks of the B-field reside within the volume. This is 
equivalent to saying that no magnetic monopoles exist in Nature. 

The boundary condition associated with Maxwell’s 4th equation states that no discontinuities 
exist in the perpendicular component B⊥ of the B-field at surfaces and interfaces. Thus, at a given 
point (r, t) in space-time, B⊥(r+, t) immediately above the surface is exactly equal to B⊥(r−, t) 
immediately below the surface. 
 
Problem 2) a) The expression for the E-field is o( , ) exp[i ( )].t tω= ⋅ −E r E k r  The k-vector is, in 
general, complex-valued, meaning that i ".'= +k k k  The propagation direction is given by k ′, 
while "k specifies the direction  along which the beam is attenuated (whenever " 0k ≠ ). The E-
field amplitude is given by the complex-valued vector o o oi .' "=E E + E  In the MKSA system of 
units, E and Eo have units of volt/meter, k has units of m−1, and ω has units of sec−1 (or 
radians/sec). 
 
b) If the real-valued vectors o'E  and o"E  are aligned with each other, or if one of them happens 
to be zero, then the E-field is said to be linearly-polarized. When both o'E  and o"E  are non-zero 
and also have different orientations in space, the E-field is circularly or elliptically polarized. 
(For circular polarization, o'E  and o"E  must have equal magnitudes and be perpendicular to each 
other.) 
 
c) The expression for the H-field is o( , ) exp[i ( )].t tω= ⋅ −H r H k r  The H-field amplitude is 
given by the complex-valued vector o o oi .' "=H H + H  In the MKSA system of units, H and Ho 
have units of ampere/meter. 
 
d) In the absence of ( , )tP r  and ρ free(r, t), we will have o( , ) ( , ),t tε=D r E r  and Maxwell’s 1st 
equation reduces to ( , ) 0.t⋅ =E r∇  Substituting the E-field distribution of part (a) in this equation 
then yields o 0,⋅ =k E  which is the constraint imposed on k and Eo by Maxwell’s 1st equation. 
 
e) Using the E- and H-field distributions given in (a) and (c), Maxwell’s 2nd equation yields: 

o o o ,ωε× =−k H E  which is the only constraint imposed by the 2nd equation on k, ω, Eo, and Ho. 
 
f) Using the E- and H-field distributions given in (a) and (c), Maxwell’s 3rd equation yields: 

o o o ,ωμ× =k E H  which is the only constraint imposed by the 3rd equation on k, ω, Eo, and Ho. 
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g) In the absence of ( , )tM r  we will have o( , ) ( , ),t tμ=B r H r  and Maxwell’s 4th equation 
reduces to ( , ) 0.t⋅ =H r∇  Substituting the H-field distribution of part (c) in this equation then 
yields o 0,⋅ =k H  which is the sole constraint imposed on k and Ho by Maxwell’s 4th equation. 
 
h) In part (f) we found 1

o o o( ) .ωμ −= ×H k E  Substituting this expression for Ho into the 
constraint obtained in part (e) yields: 1

o o o o( ) .[ ]ωμ ωε−× × =−k k E E  Using the vector identity 
( ) ( ) ( )× × = ⋅ − ⋅A B C A C B A B C  we write the preceding equation as o o( ) ( )⋅ − ⋅ =k E k k k E  

2
o o o.μ ε ω− E  From part (d) we know that o 0;⋅ =k E  therefore, 2

o o o o( ) .μ ε ω⋅ =k k E E  Dropping Eo 
from both sides of this equation and using the fact that 2

o o 1/cμ ε =  now yields 2 2( / ,)k cω=  
which is the desired dispersion relation. 
 


