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Opti 501 Written Comprehensive Exam (Fall 2015) 
 
Solution to Problem 1) 

a) In the continuity equation, 𝑱𝑱, a function of the spacetime coordinates (𝒓𝒓, 𝑡𝑡), is the current-
density (units: ampere/m2), while 𝜌𝜌, also a function of (𝒓𝒓, 𝑡𝑡), is the electric charge-density (units: 
coulomb/m3). The divergence of current-density, 𝛁𝛁 ∙ 𝑱𝑱, is the normalized rate of outflow of 
electric charge from a tiny closed surface surrounding the point 𝒓𝒓 at time 𝑡𝑡; the normalization is 
by the volume ∆𝑣𝑣 trapped within the closed surface. If the continuity equation is multiplied by 
∆𝑣𝑣, the second term becomes 𝜕𝜕[𝜌𝜌(𝒓𝒓, 𝑡𝑡)∆𝑣𝑣] 𝜕𝜕𝑡𝑡⁄ , which is the time-rate of change of the total 
electric charge residing within the closed surface. Thus, when the net flux of current out of the 
surface is positive, the total enclosed charge must decline. The opposite happens when the net 
flux of the current out of the closed surface is negative. 
 
b) In the absence of 𝑷𝑷(𝒓𝒓, 𝑡𝑡) and 𝑴𝑴(𝒓𝒓, 𝑡𝑡), Maxwell’s equations are written 

 𝜀𝜀0𝛁𝛁 ∙ 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌free(𝒓𝒓, 𝑡𝑡), (1a) 

 𝛁𝛁 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜀𝜀0𝜕𝜕𝑬𝑬(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ , (1b) 

 𝛁𝛁 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜇𝜇0𝜕𝜕𝑯𝑯(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ , (1c) 

 𝛁𝛁 ∙ 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 0. (1d) 

Applying the divergence operator to Eq.(1b), we will have 

 𝛁𝛁 ∙ [𝛁𝛁 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡)] = 𝛁𝛁 ∙ 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕[𝜀𝜀0𝛁𝛁 ∙ 𝑬𝑬(𝒓𝒓, 𝑡𝑡)] 𝜕𝜕𝑡𝑡⁄ . (2) 

Considering that the divergence of the curl of any vector field is always equal to zero, and that 
the bracketed term on the right-hand-side of Eq.(2) is the same as the expression appearing on 
the left-hand-side of Eq.(1a), we may rewrite Eq.(2) as follows: 

 𝛁𝛁 ∙ 𝑱𝑱free(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝜌𝜌free(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ = 0. (3) 

This, of course, is the charge-current continuity equation for free charges and currents. 
 
c) The bound electric charge-density is the negative of the divergence of polarization, that is, 

 𝜌𝜌bound(𝒓𝒓, 𝑡𝑡) = −𝛁𝛁 ∙ 𝑷𝑷(𝒓𝒓, 𝑡𝑡). (4) 

The bound electric current-density consists of two terms, one arising from the time variation of 
polarization, the other from the curl of magnetization, that is, 

 𝑱𝑱bound(𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑷𝑷(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ + 𝜇𝜇0−1𝛁𝛁 × 𝑴𝑴(𝒓𝒓, 𝑡𝑡). (5) 

The continuity equation for bound charge and bound current is the same as that for free charge 
and free current, namely, 

 𝛁𝛁 ∙ 𝑱𝑱bound(𝒓𝒓, 𝑡𝑡) + 𝜕𝜕𝜌𝜌bound(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ = 0. (6) 

d) In the absence of 𝜌𝜌free and 𝑱𝑱free, Maxwell’s equations are written 
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 𝛁𝛁 ∙ 𝑫𝑫(𝒓𝒓, 𝑡𝑡) = 0, (7a) 

 𝛁𝛁 × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) = 𝜕𝜕𝑫𝑫(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ , (7b) 

 𝛁𝛁 × 𝑬𝑬(𝒓𝒓, 𝑡𝑡) = −𝜕𝜕𝑩𝑩(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ , (7c) 

 𝛁𝛁 ∙ 𝑩𝑩(𝒓𝒓, 𝑡𝑡) = 0. (7d) 

In the above equations, 𝑫𝑫 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 is the displacement, while 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 + 𝑴𝑴 is the magnetic 
induction. Differentiating Eq.(7a) with respect to time, we find 

 𝜕𝜕𝛁𝛁 ∙ (𝜀𝜀0𝑬𝑬 + 𝑷𝑷) 𝜕𝜕𝑡𝑡⁄ = 0    →    𝜕𝜕 (𝛁𝛁 ∙ 𝜀𝜀0𝑬𝑬) 𝜕𝜕𝑡𝑡⁄ = −𝜕𝜕 (𝛁𝛁 ∙ 𝑷𝑷) 𝜕𝜕𝑡𝑡⁄   

 →    𝜀𝜀0𝛁𝛁 ∙ 𝜕𝜕𝑬𝑬(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ = 𝜕𝜕 𝜌𝜌bound(𝒓𝒓, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄ . (8) 

The second of Maxwell’s equations may be written in terms of the 𝑬𝑬 and 𝑩𝑩 fields as follows: 

 𝛁𝛁 × 𝑩𝑩 = 𝛁𝛁 × 𝑴𝑴 + 𝜇𝜇0𝜕𝜕(𝜀𝜀0𝑬𝑬 + 𝑷𝑷) 𝜕𝜕𝑡𝑡⁄ . (9) 

Applying the divergence operator to the above equation, we will have 

 𝛁𝛁 ∙ (𝛁𝛁 × 𝑩𝑩) = 𝛁𝛁 ∙ (𝛁𝛁 × 𝑴𝑴 + 𝜇𝜇0𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ ) + 𝜇𝜇0𝜀𝜀0𝛁𝛁 ∙ (𝜕𝜕𝑬𝑬 𝜕𝜕𝑡𝑡⁄ ). (10) 

Considering that the divergence of the curl of any vector field is always equal to zero, and that 
the last term on the right-hand-side of Eq.(10) may be replaced from Eq.(8), we will have 

 𝛁𝛁 ∙ (𝜇𝜇0−1𝛁𝛁 × 𝑴𝑴 + 𝜕𝜕𝑷𝑷 𝜕𝜕𝑡𝑡⁄ ) + 𝜕𝜕𝜌𝜌bound 𝜕𝜕𝑡𝑡⁄ = 0. (11) 

This, of course, is the charge-current continuity equation for bound charges and currents. 
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Solution to Problem 2) In the air, where the refractive index is essentially equal to 1.0, we have 
𝒌𝒌 = 𝑘𝑘𝑧𝑧𝒛𝒛� = ±(𝜔𝜔 𝑐𝑐⁄ )𝒛𝒛�, and the 𝐸𝐸-field to 𝐻𝐻-field amplitude ratio is 𝐸𝐸0 𝐻𝐻0⁄ = 𝑍𝑍0 = �𝜇𝜇0 𝜀𝜀0⁄ . 

a) Incident beam: 𝑬𝑬(i)(𝒓𝒓, 𝑡𝑡) = 𝐸𝐸0𝒙𝒙� exp{i[−(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}, (1a) 

 𝑯𝑯(i)(𝒓𝒓, 𝑡𝑡) = −(𝐸𝐸0 𝑍𝑍0⁄ )𝒚𝒚� exp{i[−(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}. (1b) 

Reflected beam: 𝑬𝑬(r)(𝒓𝒓, 𝑡𝑡) = 𝜌𝜌𝐸𝐸0𝒙𝒙� exp{i[(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}, (2a) 

 𝑯𝑯(r)(𝒓𝒓, 𝑡𝑡) = (𝜌𝜌𝐸𝐸0 𝑍𝑍0⁄ )𝒚𝒚� exp{i[(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}. (2b) 

Transmitted beam: 𝑬𝑬(t)(𝒓𝒓, 𝑡𝑡) = 𝜏𝜏𝐸𝐸0𝒙𝒙� exp{i[−(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}, (3a) 

 𝑯𝑯(t)(𝒓𝒓, 𝑡𝑡) = −(𝜏𝜏 𝐸𝐸0 𝑍𝑍0⁄ )𝒚𝒚� exp{i[−(𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}. (3b) 

Inside the slab: 𝑬𝑬(A)(𝒓𝒓, 𝑡𝑡) = 𝑎𝑎𝐸𝐸0𝒙𝒙� exp{i[−(𝑛𝑛𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}, (4a) 

 𝑯𝑯(A)(𝒓𝒓, 𝑡𝑡) = −(𝑎𝑎𝑛𝑛𝐸𝐸0 𝑍𝑍0⁄ )𝒚𝒚� exp{i[−(𝑛𝑛𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}. (4b) 

 𝑬𝑬(B)(𝒓𝒓, 𝑡𝑡) = 𝑏𝑏𝐸𝐸0𝒙𝒙� exp{i[(𝑛𝑛𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}, (5a) 

 𝑯𝑯(B)(𝒓𝒓, 𝑡𝑡) = (𝑏𝑏𝑛𝑛𝐸𝐸0 𝑍𝑍0⁄ )𝒚𝒚� exp{i[(𝑛𝑛𝜔𝜔 𝑐𝑐⁄ )𝑧𝑧 − 𝜔𝜔𝑡𝑡]}. (5b) 
 
b) At the top of the slab, where 𝑧𝑧 = 0, we have 

Continuity of 𝑬𝑬∥: 𝐸𝐸0 + 𝜌𝜌𝐸𝐸0 = 𝑎𝑎𝐸𝐸0 + 𝑏𝑏𝐸𝐸0. (6a)  

Continuity of 𝑯𝑯∥: 𝑍𝑍0−1(−𝐸𝐸0 + 𝜌𝜌𝐸𝐸0) = 𝑍𝑍0−1(−𝑎𝑎𝑛𝑛𝐸𝐸0 + 𝑏𝑏𝑛𝑛𝐸𝐸0). (6b)  

At the bottom of the slab, where 𝑧𝑧 = −𝑑𝑑, we have 

Continuity of 𝑬𝑬∥: 𝑎𝑎𝐸𝐸0 exp(i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) + 𝑏𝑏𝐸𝐸0 exp(− i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) = 𝜏𝜏𝐸𝐸0 exp(i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ). (7a)  

Continuity of 𝑯𝑯∥: 

 𝑍𝑍0−1[−𝑎𝑎𝑛𝑛𝐸𝐸0 exp(i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) + 𝑏𝑏𝑛𝑛𝐸𝐸0 exp(− i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ )] = −𝑍𝑍0−1𝜏𝜏𝐸𝐸0 exp(i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ). (7b)  
 
c) Equations (6) and (7) may now be solved to determine the coefficients 𝑎𝑎, 𝑏𝑏,𝜌𝜌, 𝜏𝜏, as follows: 

 1 + 𝜌𝜌 = 𝑎𝑎 + 𝑏𝑏, (8a)  

 1 − 𝜌𝜌 = (𝑎𝑎 − 𝑏𝑏)𝑛𝑛, (8b)  

 𝑎𝑎 exp(i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) + 𝑏𝑏 exp(− i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) = 𝜏𝜏 exp(i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ), (8c)  

 𝑎𝑎𝑛𝑛 exp(i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) − 𝑏𝑏𝑛𝑛 exp(− i𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) = 𝜏𝜏 exp(i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ). (8d)  
From the above equations we find 

 1−𝜌𝜌
1+𝜌𝜌

= 𝑛𝑛 �1 − (𝑏𝑏 𝑎𝑎⁄ )
1 + (𝑏𝑏 𝑎𝑎⁄ )�, (9a) 

 𝑏𝑏
𝑎𝑎

= �𝑛𝑛−1
𝑛𝑛+1

� exp(i2𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ). (9b) 
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Substituting from Eq.(9b) into Eq.(9a), then solving for 𝜌𝜌, we arrive at 

 1−𝜌𝜌
1+𝜌𝜌

= 𝑛𝑛 �1−[(𝑛𝑛−1) (𝑛𝑛+1)⁄ ]exp(i2𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐⁄ )
1+[(𝑛𝑛−1) (𝑛𝑛+1)⁄ ]exp(i2𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐⁄ )�     →    𝜌𝜌 = [(𝑛𝑛−1) (𝑛𝑛+1)⁄ ][1 − exp(i2𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐⁄ )]

[(𝑛𝑛−1) (𝑛𝑛+1)⁄ ]2 exp(i2𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐⁄ ) − 1
. (10) 

Subsequently, the Fresnel transmission coefficient 𝜏𝜏 is obtained from Eq.(8c) with the aid of 
Eqs.(8a) and (8b), as follows: 

 𝜏𝜏 exp(i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) =  (𝑎𝑎 + 𝑏𝑏) cos(𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) + i(𝑎𝑎 − 𝑏𝑏) sin(𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) 

 →    𝜏𝜏 =  [(1 + 𝜌𝜌) cos(𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) + i𝑛𝑛−1(1− 𝜌𝜌) sin(𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ )] exp(− i𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ). (11) 

In the above expressions for 𝜌𝜌 and 𝜏𝜏, one may replace (𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) with (2𝜋𝜋𝑛𝑛𝑑𝑑/𝜆𝜆0), where 𝜆𝜆0 is 
the incident beam’s vacuum wavelength. 
 
d) With reference to Eq.(10), the reflectance will be zero when exp(i2𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) = 1. This 
happens when 𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄  becomes an integer-multiple of 𝜋𝜋, or, equivalently, when 2𝑛𝑛𝑑𝑑/𝜆𝜆0 
becomes an integer. Thus, when the thickness of the slab is an integer-multiple of half-
wavelength within the dielectric, i.e., 𝜆𝜆0 2𝑛𝑛⁄ , the reflectance of the slab precisely equals zero. 
 
e) From symmetry of Eq.(10), the maximum reflectance must occur halfway between adjacent 
minima. Thus when the thickness 𝑑𝑑 is an odd-multiple of a quarter-wavelength within the 
dielectric, i.e., 𝜆𝜆0 4𝑛𝑛⁄ , we will have exp(i2𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) = −1, at which point the reflectance will be 
a maximum, that is, 

 𝑅𝑅max = |𝜌𝜌|2 = 4 �𝑛𝑛−1
𝑛𝑛+1

�
2

�1 + �𝑛𝑛−1
𝑛𝑛+1

�
2
�
2

� . (12) 

Note: To see the symmetry of Eq.(10), start the phase-angle (2𝑛𝑛𝜔𝜔𝑑𝑑 𝑐𝑐⁄ ) at an integer-multiple of 
2𝜋𝜋, and change it by ±𝜑𝜑. You will find that the corresponding values of 𝜌𝜌 are conjugates of each 
other, and that, therefore, the corresponding values of 𝑅𝑅 = |𝜌𝜌|2 are identical. 
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