Fall 2014 Written Comprehensive Exam

Opti 501
Solution to Problem 1: The displacement field is defined as $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P}$, while the magnetic induction is defined as $\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\boldsymbol{M}$. Maxwell's macroscopic equations are written

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \boldsymbol{D}=\rho_{\text {free }}, \\
& \boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}+\frac{\partial \boldsymbol{D}}{\partial t}, \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 .
\end{aligned}
$$

b) In terms of the bound electric charge-density $\rho_{\text {bound }}^{(\mathrm{e})}=-\boldsymbol{\nabla} \cdot \boldsymbol{P}$ and bound electric currentdensity $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}=\partial \boldsymbol{P} / \partial t+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}$, the above Maxwell's equations may be rewritten as

$$
\begin{aligned}
& \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{\text {free }}+\rho_{\text {bound }}^{(\mathrm{e})}, \\
& \boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0}\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}, \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}, \\
& \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 .
\end{aligned}
$$

c) Dot-multiplying the second of the above equations into \boldsymbol{E} and the third equation into \boldsymbol{B}, then subtracting one from the other, we will find

$$
\begin{aligned}
& \boldsymbol{E} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})=\mu_{0} \boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\mu_{0} \varepsilon_{0} \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t}, \\
& \boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{E})=-\boldsymbol{B} \cdot \frac{\partial \boldsymbol{B}}{\partial t},
\end{aligned}
$$

Subtraction: $\quad \boldsymbol{E} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})-\boldsymbol{B} \cdot(\boldsymbol{\nabla} \times \boldsymbol{E})=\mu_{0} \boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\mu_{0} \varepsilon_{0} \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t}+\boldsymbol{B} \cdot \frac{\partial \boldsymbol{B}}{\partial t}$

$$
\begin{aligned}
& \rightarrow \quad-\boldsymbol{\nabla} \cdot(\boldsymbol{E} \times \boldsymbol{B})=\mu_{0} \boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+1 / 2 \mu_{0} \varepsilon_{0} \frac{\partial(\boldsymbol{E} \cdot \boldsymbol{E})}{\partial t}+1 / 2 \frac{\partial(\boldsymbol{B} \cdot \boldsymbol{B})}{\partial t} \\
& \rightarrow \quad \nabla \cdot\left(\mu_{0}^{-1} \boldsymbol{E} \times \boldsymbol{B}\right)+\frac{\partial}{\partial t}\left(1 / 2 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}+1 / 2 \mu_{0}^{-1} \boldsymbol{B} \cdot \boldsymbol{B}\right)+\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)=0 .
\end{aligned}
$$

d) In the above version of the Poynting theorem, the Poynting vector is $\boldsymbol{S}=\mu_{0}^{-1} \boldsymbol{E} \times \boldsymbol{B}$, the stored energy in the E-field has density $1 / 2 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}$, the stored energy in the B-field has density $1 / 2 \mu_{0}^{-1} \boldsymbol{B} \cdot \boldsymbol{B}$, and the rate of exchange of electromagnetic energy between the fields and the material media is given by $\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)=\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{P} / \partial t+\mu_{0}^{-1} \boldsymbol{\nabla} \times \boldsymbol{M}\right)$.
e) In terms of bound electric charge-density $\rho_{\text {bound }}^{(\mathrm{e})}=-\boldsymbol{\nabla} \cdot \boldsymbol{P}$, bound electric current-density $\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}=\partial \boldsymbol{P} / \partial t$, bound magnetic charge-density $\rho_{\text {bound }}^{(\mathrm{m})}=-\boldsymbol{\nabla} \cdot \boldsymbol{M}$, and bound magnetic current-density $\boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}=\partial \boldsymbol{M} / \partial t$, Maxwell's equations may be rewritten as

$$
\begin{aligned}
& \varepsilon_{0} \boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{\text {free }}+\rho_{\text {bound }}^{(\mathrm{e})}, \\
& \boldsymbol{\nabla} \times \boldsymbol{H}=\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}+\varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}, \\
& \boldsymbol{\nabla} \times \boldsymbol{E}=-\boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}-\mu_{0} \frac{\partial \boldsymbol{H}}{\partial t}, \\
& \mu_{0} \boldsymbol{\nabla} \cdot \boldsymbol{H}=\rho_{\text {bound }}^{(\mathrm{m})} .
\end{aligned}
$$

Dot-multiplying the second of the above equations into \boldsymbol{E} and the third equation into \boldsymbol{H}, then subtracting one from the other, we find

$$
\begin{gathered}
\boldsymbol{E} \cdot(\boldsymbol{\nabla} \times \boldsymbol{H})=\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\varepsilon_{0} \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t}, \\
\\
\frac{\boldsymbol{H} \cdot(\boldsymbol{\nabla} \times \boldsymbol{E})=-\boldsymbol{H} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}-\mu_{0} \boldsymbol{H} \cdot \frac{\partial \boldsymbol{H}}{\partial t},}{\boldsymbol{E} \cdot(\boldsymbol{\nabla} \times \boldsymbol{H})-\boldsymbol{H} \cdot(\boldsymbol{\nabla} \times \boldsymbol{E})=\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\varepsilon_{0} \boldsymbol{E} \cdot \frac{\partial \boldsymbol{E}}{\partial t}+\boldsymbol{H} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}+\mu_{0} \boldsymbol{H} \cdot \frac{\partial \boldsymbol{H}}{\partial t}} \\
\rightarrow \quad-\boldsymbol{\nabla} \cdot(\boldsymbol{E} \times \boldsymbol{H})=\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\boldsymbol{H} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}+1 / 2 \varepsilon_{0} \frac{\partial(\boldsymbol{E} \cdot \boldsymbol{E})}{\partial t}+1 / 2 \mu_{0} \frac{\partial(\boldsymbol{H} \cdot \boldsymbol{H})}{\partial t} \\
\rightarrow \quad \nabla \cdot(\boldsymbol{E} \times \boldsymbol{H})+\frac{\partial}{\partial t}\left(112 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}+1 / 2 \mu_{0} \boldsymbol{H} \cdot \boldsymbol{H}\right)+\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)+\boldsymbol{H} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}=0 .
\end{gathered}
$$

In the above version of the Poynting theorem, the Poynting vector is $\boldsymbol{S}=\boldsymbol{E} \times \boldsymbol{H}$, the stored energy in the E-field has density $1 / 2 \varepsilon_{0} \boldsymbol{E} \cdot \boldsymbol{E}$, the stored energy in the H-field has density $1 / 2 \mu_{0} \boldsymbol{H} \cdot \boldsymbol{H}$, the rate of exchange of electromagnetic energy between the E-field and the material media is $\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\boldsymbol{J}_{\text {bound }}^{(\mathrm{e})}\right)=\boldsymbol{E} \cdot\left(\boldsymbol{J}_{\text {free }}+\partial \boldsymbol{P} / \partial t\right)$, and the rate of exchange of electromagnetic energy between the H-field and material media is $\boldsymbol{H} \cdot \boldsymbol{J}_{\text {bound }}^{(\mathrm{m})}=\boldsymbol{H} \cdot \partial \boldsymbol{M} / \partial t$.

Solution to Problem 2: In the following analysis, the polarization of the incident, reflected, and transmitted beams is taken to be along the x-axis, the speed of light in vacuum is denoted by c, and the impedance of free space is Z_{0}. The numerical value of Z_{0} is $\sim 377 \Omega$.
a)

$$
\begin{aligned}
& \boldsymbol{E}^{(\mathrm{i})}(\boldsymbol{r}, t)=E_{0}^{(\mathrm{i})} \widehat{\boldsymbol{x}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{H}^{(\mathrm{i})}(\boldsymbol{r}, t)=H_{0}^{(\mathrm{i})} \widehat{\boldsymbol{y}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{k}^{(\mathrm{i})}=-(\omega / c) \widehat{\mathbf{z}} ; \quad H_{0}^{(\mathrm{i})}=-E_{0}^{(\mathrm{i})} / Z_{0} \\
& \boldsymbol{E}^{(\mathrm{r})}(\boldsymbol{r}, t)=E_{0}^{(\mathrm{r})} \widehat{\boldsymbol{x}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{H}^{(\mathrm{r})}(\boldsymbol{r}, t)=H_{0}^{(\mathrm{r})} \widehat{\boldsymbol{y}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{k}^{(\mathrm{r})}=+(\omega / c) \hat{\mathbf{z}} ; \quad H_{0}^{(\mathrm{r})}=+E_{0}^{(\mathrm{r})} / Z_{0} \\
& \boldsymbol{E}^{(\mathrm{t})}(\boldsymbol{r}, t)=E_{0}^{(\mathrm{t})} \widehat{\boldsymbol{x}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{H}^{(\mathrm{t})}(\boldsymbol{r}, t)=H_{0}^{(\mathrm{t})} \widehat{\boldsymbol{y}} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{t})} \cdot \boldsymbol{r}-\omega t\right)\right], \\
& \boldsymbol{k}^{(\mathrm{t})}=-(n \omega / c) \widehat{\mathbf{z}} ; \quad H_{0}^{(\mathrm{t})}=-n E_{0}^{(\mathrm{t})} / Z_{0} .
\end{aligned}
$$

b) At normal incidence, the Fresnel reflection and transmission coefficients from vacuum (where $n_{0}=1$) to water (where $n_{1}=1.33$) are given by

$$
\rho=\frac{n_{0}-n_{1}}{n_{0}+n_{1}}=-0.14163 ; \quad \tau=\frac{2 n_{0}}{n_{0}+n_{1}}=0.85837
$$

Consequently, $E_{0}^{(\mathrm{r})}=-0.14163 E_{0}^{(\mathrm{i})}$, and $E_{0}^{(\mathrm{t})}=0.85837 E_{0}^{(\mathrm{i})}$.
c) The energy flux per unit area per unit time is the time-averaged Poynting vector, that is,

$$
\langle\boldsymbol{S}\rangle=1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)=1 / 2 \operatorname{Re}\left(E_{0} \widehat{\boldsymbol{x}} \times H_{0}^{*} \widehat{\boldsymbol{y}}\right)= \pm 1 / 2 n\left|E_{0}\right|^{2} \widehat{\mathbf{z}} / Z_{0}
$$

Thus for the incident beam

$$
S_{Z}^{(\mathrm{i})}=-1 / 2\left|E_{0}^{(\mathrm{i})}\right|^{2} / Z_{0}
$$

for the reflected beam

$$
S_{z}^{(\mathrm{r})}=+1 / 2\left|E_{0}^{(\mathrm{r})}\right|^{2} / Z_{0}=1 / 2(-0.14163)^{2}\left|E_{0}^{(\mathrm{i})}\right|^{2} / Z_{0}=1 / 2(0.02006)\left|E_{0}^{(\mathrm{i})}\right|^{2} / Z_{0}
$$

and for the transmitted beam

$$
S_{z}^{(\mathrm{t})}=-1 / 2(1.33)(0.85837)^{2}\left|E_{0}^{(\mathrm{i})}\right|^{2} / Z_{0}=-1 / 2(0.97994)\left|E_{0}^{(\mathrm{i})}\right|^{2} / Z_{0}
$$

d) Since $0.97994+0.02006=1.0$, we conclude that the flux of incident energy is equal to the sum of the reflected and transmitted fluxes of energy. Therefore, energy is being conserved.

