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Solution to Problem 1: The displacement field is defined as 𝑫 = 𝜀0𝑬 + 𝑷, while the magnetic 
induction is defined as 𝑩 = 𝜇0𝑯 + 𝑴. Maxwell’s macroscopic equations are written 

 𝜵 ∙ 𝑫 = 𝜌free, 

 𝜵 × 𝑯 = 𝑱free + 𝜕𝑫
𝜕𝑡

, 

 𝜵 × 𝑬 = −𝜕𝑩
𝜕𝑡

, 

 𝜵 ∙ 𝑩 = 0. 

b) In terms of the bound electric charge-density 𝜌bound
(e) = −𝜵 ∙ 𝑷 and bound electric current-

density 𝑱bound
(e) = 𝜕𝑷 𝜕𝑡⁄ + 𝜇0−1𝜵 × 𝑴, the above Maxwell’s equations may be rewritten as 

 𝜀0𝜵 ∙ 𝑬 = 𝜌free + 𝜌bound
(e) , 

 𝜵 × 𝑩 = 𝜇0�𝑱free + 𝑱bound
(e) � + 𝜇0𝜀0

𝜕𝑬
𝜕𝑡

, 

 𝜵 × 𝑬 = −𝜕𝑩
𝜕𝑡

, 

 𝜵 ∙ 𝑩 = 0. 

c) Dot-multiplying the second of the above equations into 𝑬 and the third equation into 𝑩, then 
subtracting one from the other, we will find 

 𝑬 ∙ (𝜵 × 𝑩) = 𝜇0𝑬 ∙ �𝑱free + 𝑱bound
(e) �+ 𝜇0𝜀0𝑬 ∙

𝜕𝑬
𝜕𝑡

, 

 𝑩 ∙ (𝜵 × 𝑬) = −𝑩 ∙ 𝜕𝑩
𝜕𝑡

, 

Subtraction: 𝑬 ∙ (𝜵 × 𝑩) − 𝑩 ∙ (𝜵 × 𝑬) = 𝜇0𝑬 ∙ �𝑱free + 𝑱bound
(e) � + 𝜇0𝜀0𝑬 ∙

𝜕𝑬
𝜕𝑡

+ 𝑩 ∙ 𝜕𝑩
𝜕𝑡

 

 →         −𝜵 ∙ (𝑬 × 𝑩) = 𝜇0𝑬 ∙ �𝑱free + 𝑱bound
(e) � + ½𝜇0𝜀0

𝜕(𝑬∙𝑬)
𝜕𝑡

+ ½ 𝜕(𝑩∙𝑩)
𝜕𝑡

 

 →         𝜵 ∙ (𝜇0−1𝑬 × 𝑩) + 𝜕
𝜕𝑡

(½𝜀0𝑬 ∙ 𝑬 + ½𝜇0−1𝑩 ∙ 𝑩) + 𝑬 ∙ �𝑱free + 𝑱bound
(e) � = 0. 

d) In the above version of the Poynting theorem, the Poynting vector is 𝑺 = 𝜇0−1𝑬 × 𝑩, the 
stored energy in the 𝐸-field has density ½𝜀0𝑬 ∙ 𝑬, the stored energy in the 𝐵-field has density 
½𝜇0−1𝑩 ∙ 𝑩, and the rate of exchange of electromagnetic energy between the fields and the 
material media is given by 𝑬 ∙ �𝑱free + 𝑱bound

(e) � = 𝑬 ∙ (𝑱free + 𝜕𝑷 𝜕𝑡⁄ + 𝜇0−1𝜵 × 𝑴). 
 
e) In terms of bound electric charge-density 𝜌bound

(e) = −𝜵 ∙ 𝑷, bound electric current-density 
𝑱bound

(e) = 𝜕𝑷 𝜕𝑡⁄ , bound magnetic charge-density 𝜌bound
(m) = −𝜵 ∙ 𝑴, and bound magnetic 

current-density 𝑱bound
(m) = 𝜕𝑴 𝜕𝑡⁄ , Maxwell’s equations may be rewritten as 
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 𝜀0𝜵 ∙ 𝑬 = 𝜌free + 𝜌bound
(e) , 

 𝜵 × 𝑯 = 𝑱free + 𝑱bound
(e) + 𝜀0

𝜕𝑬
𝜕𝑡

, 

 𝜵 × 𝑬 = −𝑱bound
(m) − 𝜇0

𝜕𝑯
𝜕𝑡

, 

 𝜇0𝜵 ∙ 𝑯 = 𝜌bound
(m) . 

Dot-multiplying the second of the above equations into 𝑬 and the third equation into 𝑯, then 
subtracting one from the other, we find 

 𝑬 ∙ (𝜵 × 𝑯) = 𝑬 ∙ �𝑱free + 𝑱bound
(e) � + 𝜀0𝑬 ∙

𝜕𝑬
𝜕𝑡

, 

 𝑯 ∙ (𝜵 × 𝑬) = −𝑯 ∙ 𝑱bound
(m) − 𝜇0𝑯 ∙ 𝜕𝑯

𝜕𝑡
, 

 𝑬 ∙ (𝜵 × 𝑯) −𝑯 ∙ (𝜵 × 𝑬) = 𝑬 ∙ �𝑱free + 𝑱bound
(e) � + 𝜀0𝑬 ∙

𝜕𝑬
𝜕𝑡

+ 𝑯 ∙ 𝑱bound
(m) + 𝜇0𝑯 ∙ 𝜕𝑯

𝜕𝑡
 

 →         −𝜵 ∙ (𝑬 × 𝑯) = 𝑬 ∙ �𝑱free + 𝑱bound
(e) �+ 𝑯 ∙ 𝑱bound

(m) + ½𝜀0
𝜕(𝑬∙𝑬)
𝜕𝑡

+ ½𝜇0
𝜕(𝑯∙𝑯)
𝜕𝑡

 

 →         𝜵 ∙ (𝑬 × 𝑯) + 𝜕
𝜕𝑡

(½𝜀0𝑬 ∙ 𝑬 + ½𝜇0𝑯 ∙ 𝑯) + 𝑬 ∙ �𝑱free + 𝑱bound
(e) � + 𝑯 ∙ 𝑱bound

(m) = 0. 

In the above version of the Poynting theorem, the Poynting vector is 𝑺 = 𝑬 × 𝑯, the stored 
energy in the 𝐸-field has density ½𝜀0𝑬 ∙ 𝑬, the stored energy in the 𝐻-field has density 
½𝜇0𝑯 ∙ 𝑯, the rate of exchange of electromagnetic energy between the 𝐸-field and the 
material media is 𝑬 ∙ �𝑱free + 𝑱bound

(e) � = 𝑬 ∙ (𝑱free + 𝜕𝑷 𝜕𝑡⁄ ), and the rate of exchange of 

electromagnetic energy between the 𝐻-field and material media is 𝑯 ∙ 𝑱bound
(m) = 𝑯 ∙ 𝜕𝑴 𝜕𝑡⁄ . 
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Solution to Problem 2: In the following analysis, the polarization of the incident, reflected, and 
transmitted beams is taken to be along the 𝑥-axis, the speed of light in vacuum is denoted by 𝑐, 
and the impedance of free space is 𝑍0. The numerical value of 𝑍0 is ~377Ω. 

a) 𝑬(i)(𝒓, 𝑡) = 𝐸0
(i)𝒙� exp �i�𝒌(i) ∙ 𝒓 − 𝜔𝑡��, 

 𝑯(i)(𝒓, 𝑡) = 𝐻0
(i)𝒚� exp �i�𝒌(i) ∙ 𝒓 − 𝜔𝑡��, 

 𝒌(i) = −(𝜔 𝑐⁄ )𝒛�;        𝐻0
(i) = −𝐸0

(i) 𝑍0� . 

 𝑬(r)(𝒓, 𝑡) = 𝐸0
(r)𝒙� exp �i�𝒌(r) ∙ 𝒓 − 𝜔𝑡��, 

 𝑯(r)(𝒓, 𝑡) = 𝐻0
(r)𝒚� exp �i�𝒌(r) ∙ 𝒓 − 𝜔𝑡��, 

 𝒌(r) = +(𝜔 𝑐⁄ )𝒛�;        𝐻0
(r) = +𝐸0

(r) 𝑍0� . 

 𝑬(t)(𝒓, 𝑡) = 𝐸0
(t)𝒙� exp �i�𝒌(t) ∙ 𝒓 − 𝜔𝑡��, 

 𝑯(t)(𝒓, 𝑡) = 𝐻0
(t)𝒚� exp �i�𝒌(t) ∙ 𝒓 − 𝜔𝑡��, 

 𝒌(t) = −(𝑛𝜔 𝑐⁄ )𝒛�;        𝐻0
(t) = −𝑛𝐸0

(t) 𝑍0� . 

b) At normal incidence, the Fresnel reflection and transmission coefficients from vacuum (where 
𝑛0 = 1) to water (where 𝑛1 = 1.33) are given by 

 𝜌 = 𝑛0−𝑛1
𝑛0+𝑛1

= −0.14163; 𝜏 = 2𝑛0
𝑛0+𝑛1

= 0.85837. 

Consequently, 𝐸0
(r) = −0.14163𝐸0

(i), and 𝐸0
(t) = 0.85837𝐸0

(i). 
 
c) The energy flux per unit area per unit time is the time-averaged Poynting vector, that is, 

 〈𝑺〉 = ½Re(𝑬 × 𝑯∗) = ½Re(𝐸0𝒙� × 𝐻0∗𝒚�) = ±½𝑛|𝐸0|2𝒛� 𝑍0⁄ . 

Thus for the incident beam 

 𝑆𝑧
(i) = −½�𝐸0

(i)�
2

/𝑍0, 

for the reflected beam 

 𝑆𝑧
(r) = +½ �𝐸0

(r)�
2
𝑍0� = ½ (−0.14163)2�𝐸0

(i)�
2
𝑍0� = ½ (0.02006)�𝐸0

(i)�
2
𝑍0� , 

and for the transmitted beam 

 𝑆𝑧
(t) = −½ (1.33)(0.85837)2�𝐸0

(i)�
2
𝑍0� = −½(0.97994)�𝐸0

(i)�
2

/𝑍0. 

d) Since 0.97994 + 0.02006 = 1.0, we conclude that the flux of incident energy is equal to the 
sum of the reflected and transmitted fluxes of energy. Therefore, energy is being conserved. 
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