Solution to Problem 1)

a) Lorenz Gauge: $\boldsymbol{\nabla} \cdot \boldsymbol{A}+\frac{1}{c^{2}} \frac{\partial \psi}{\partial t}=0 \rightarrow \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}-\left(\mathrm{i} \omega / c^{2}\right) \psi_{\mathrm{o}}=0 \rightarrow \boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}=\left(\omega / c^{2}\right) \psi_{\mathrm{o}}$.
b) $\boldsymbol{E}=-\boldsymbol{\nabla} \psi-\frac{\partial \boldsymbol{A}}{\partial t} \rightarrow \boldsymbol{E}(\boldsymbol{r}, t)=\left(-\mathrm{i} \boldsymbol{k} \psi_{\mathrm{o}}+\mathrm{i} \omega \boldsymbol{A}_{\mathrm{o}}\right) \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]$
$\rightarrow \quad \boldsymbol{E}_{\mathrm{o}}=\mathrm{i}\left(\omega \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k} \psi_{\mathrm{o}}\right) \quad \rightarrow \quad \boldsymbol{E}_{\mathrm{o}}=\mathrm{i} \omega\left[\boldsymbol{A}_{\mathrm{o}}-(c / \omega)^{2}\left(\boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}\right) \boldsymbol{k}\right]$.
$\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A} \rightarrow \boldsymbol{B}(\boldsymbol{r}, t)=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)] \quad \rightarrow \quad \boldsymbol{B}_{\mathrm{o}}=\mu_{\mathrm{o}} \boldsymbol{H}_{\mathrm{o}}=\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}}$.
c) In free space, $\rho_{\text {free }}=0, \boldsymbol{J}_{\text {free }}=0, \boldsymbol{P}=0$, and $\boldsymbol{M}=0$. Consequently, $\boldsymbol{D}=\varepsilon_{0} \boldsymbol{E}$ and $\boldsymbol{B}=\mu_{0} \boldsymbol{H}$. Maxwell's equations thus become

$$
\begin{aligned}
& \text { i) } \boldsymbol{\nabla} \cdot \varepsilon_{\mathrm{o}} \boldsymbol{E}=0 \rightarrow \mathrm{i} \varepsilon_{\mathrm{o}} \boldsymbol{k} \cdot \boldsymbol{E} \boldsymbol{E}_{\mathrm{o}} \exp [\mathrm{i}(\boldsymbol{k} \cdot \boldsymbol{r}-\omega t)]=0 \rightarrow \boldsymbol{k} \cdot \boldsymbol{E}_{\mathrm{o}}=0 \rightarrow \boldsymbol{k} \cdot\left(\omega \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k} \psi_{\mathrm{o}}\right)=0 \\
& \rightarrow \omega \boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k}^{2} \psi_{\mathrm{o}}=0 \rightarrow(\omega / c)^{2} \psi_{\mathrm{o}}-\boldsymbol{k}^{2} \psi_{\mathrm{o}}=0 \rightarrow \text { Either } \psi_{o}=0 \text { or } \boldsymbol{k}^{2}=(\omega / c)^{2} . \\
& \text { ii) } \boldsymbol{\nabla} \times \boldsymbol{H}=\frac{\partial \varepsilon_{\mathrm{o}} \boldsymbol{E}}{\partial t} \rightarrow \boldsymbol{\nabla} \times \boldsymbol{B}=\boldsymbol{\nabla} \times \mu_{\mathrm{o}} \boldsymbol{H}=\frac{\partial \boldsymbol{E}}{c^{2} \partial t} \rightarrow \mathrm{i} \boldsymbol{k} \times\left(\mathrm{i} \mathbf{k} \times \boldsymbol{A}_{\mathrm{o}}\right)=-\left(\mathrm{i} \omega / c^{2}\right) \boldsymbol{E}_{\mathrm{o}} \\
& \rightarrow\left(\boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}\right) \boldsymbol{k}-\boldsymbol{k}^{2} \boldsymbol{A}_{\mathrm{o}}=-\left(\omega / c^{2}\right)\left(\omega \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k} \psi_{\mathrm{o}}\right) \\
& \rightarrow\left[\boldsymbol{k}^{2}-(\omega / c)^{2}\right] \boldsymbol{A}_{\mathrm{o}}=\left[\boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}-\left(\omega / c^{2}\right) \psi_{\mathrm{o}}\right] \boldsymbol{k}=0 \rightarrow \boldsymbol{k}^{2}=(\omega / c)^{2} . \\
& \text { iii) } \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \rightarrow \mathrm{i} \boldsymbol{k} \times\left[\mathrm{i}\left(\omega \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k} \psi_{\mathrm{o}}\right)\right]=\mathrm{i} \omega\left(\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}}\right) \\
& \rightarrow \omega \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}}-(\boldsymbol{k} \times \boldsymbol{k}) \psi_{\mathrm{o}}=\omega \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}} \rightarrow(\boldsymbol{k} \times \boldsymbol{k}) \psi_{\mathrm{o}}=0 \rightarrow 0=0 . \\
& \text { iv) } \boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \rightarrow \mathrm{i} \boldsymbol{k} \cdot\left(\mathrm{i} \boldsymbol{k} \times \boldsymbol{A}_{\mathrm{o}}\right)=0 \rightarrow(\boldsymbol{k} \times \boldsymbol{k}) \cdot \boldsymbol{A}_{\mathrm{o}}=0 \rightarrow 0=0 .
\end{aligned}
$$

Thus, the only constraint on the parameters, aside from the Lorenz gauge $\boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}=\left(\omega / c^{2}\right) \psi_{\mathrm{o}}$, is $\boldsymbol{k}^{2}=(\omega / c)^{2}$.
d) The plane-wave is inhomogeneous (or evanescent) when the imaginary component of \boldsymbol{k} is non-zero. The constraint $\boldsymbol{k}^{2}=(\omega / c)^{2}$ thus yields

$$
\begin{aligned}
\boldsymbol{k}^{2}=(\omega / c)^{2} & \rightarrow\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right) \cdot\left(\boldsymbol{k}^{\prime}+\mathrm{i} \boldsymbol{k}^{\prime \prime}\right)=(\omega / c)^{2} \quad \rightarrow \boldsymbol{k}^{\prime 2}-\boldsymbol{k}^{\prime 2}+2 \mathrm{i} \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=(\omega / c)^{2} \\
& \rightarrow \boldsymbol{k}^{\prime 2}-\boldsymbol{k}^{\prime \prime 2}=(\omega / c)^{2} \quad \text { and } \quad \boldsymbol{k}^{\prime} \cdot \boldsymbol{k}^{\prime \prime}=0 .
\end{aligned}
$$

For the plane-wave to be evanescent, it is thus necessary for \boldsymbol{k}^{\prime} and $\boldsymbol{k}^{\prime \prime}$ to be orthogonal to each other. It is also necessary for $\left|\boldsymbol{k}^{\prime}\right|$ to be greater than ω / c, so that $\left|\boldsymbol{k}^{\prime \prime}\right|$ will be real-valued.
e) When \boldsymbol{k} is a real-valued vector, i.e., when $\boldsymbol{k}^{\prime \prime}=0$, the plane-wave will be homogeneous. Both $\boldsymbol{E}_{\mathrm{o}}$ and $\boldsymbol{B}_{\mathrm{o}}$ will then be proportional to the transverse component $\boldsymbol{A}_{\mathrm{o} \perp}=\boldsymbol{A}_{\mathrm{o}}-(c / \omega)^{2}\left(\boldsymbol{k} \cdot \boldsymbol{A}_{0}\right) \boldsymbol{k}$ of \boldsymbol{A}_{0}, with $\boldsymbol{B}_{\mathrm{o}}$ rotated around the k-vector by 90°. The plane-wave will be linearly polarized if
the real and imaginary parts of this transverse vector potential, namely, $\boldsymbol{A}^{\prime}{ }_{\circ}$ and $\boldsymbol{A}^{\prime \prime}{ }_{o \perp}$, happen to be parallel to each other, or if one of them (either $\boldsymbol{A}_{\circ \perp}^{\prime}$ or $\boldsymbol{A}^{\prime \prime}{ }_{\circ \perp}$) vanishes.
f) Again, the plane-wave is homogeneous when $\boldsymbol{k}^{\prime \prime}=0$. As before, $\boldsymbol{E}_{\mathrm{o}}$ and \boldsymbol{B}_{0} will be proportional to $\boldsymbol{A}_{0 \perp}$, with \boldsymbol{B}_{0} rotated around \boldsymbol{k} by 90°. The plane-wave will be circularly polarized if $\boldsymbol{A}_{\mathrm{o} \perp}^{\prime}$ and $\boldsymbol{A}^{\prime \prime}{ }_{o \perp}$ happen to be equal in magnitude and perpendicular to each other.
g) The time-averaged rate of flow of electromagnetic energy is given by the time-averaged Poynting vector, that is,

$$
\begin{aligned}
<\boldsymbol{S}(\boldsymbol{r}, t)> & =\frac{1}{2} \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)=\frac{1}{2} \exp \left(-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right) \operatorname{Re}\left(\boldsymbol{E}_{\mathrm{o}} \times \boldsymbol{H}_{\mathrm{o}}^{*}\right) \\
& =\frac{1}{2} \exp \left(-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right) \operatorname{Re}\left\{\left(\omega \boldsymbol{A}_{\mathrm{o}}-\boldsymbol{k} \psi_{\mathrm{o}}\right) \times \mu_{\mathrm{o}}^{-1} \boldsymbol{k}^{*} \times \boldsymbol{A}_{\mathrm{o}}^{*}\right\} \\
& =\frac{\exp \left(-2 \boldsymbol{k}^{\prime \prime} \cdot \boldsymbol{r}\right)}{2 \mu_{\mathrm{o}}} \operatorname{Re}\left\{\left[\left(\boldsymbol{A}_{\mathrm{o}} \cdot \boldsymbol{A}_{\mathrm{o}}^{*}\right) \boldsymbol{k}^{*}-\left(\boldsymbol{k}^{*} \cdot \boldsymbol{A}_{\mathrm{o}}\right) \boldsymbol{A}_{\mathrm{o}}^{*}\right] \omega+\left[\left(\boldsymbol{k} \cdot \boldsymbol{k}^{*}\right) \boldsymbol{A}_{\mathrm{o}}^{*}-\left(\boldsymbol{k} \cdot \boldsymbol{A}_{\mathrm{o}}^{*}\right) \boldsymbol{k}^{*}\right] \psi_{\mathrm{o}}\right\} .
\end{aligned}
$$

Solution to Problem 2)

a)

$$
\begin{gathered}
\boldsymbol{E}(z, t)=E_{\mathrm{o}} \hat{\boldsymbol{x}} \sin (k z-\omega t)+E_{\mathrm{o}} \hat{\boldsymbol{x}} \sin (k z+\omega t)=2 E_{\mathrm{o}} \hat{\boldsymbol{x}} \sin (k z) \cos (\omega t) \\
\boldsymbol{H}(z, t)=Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \hat{\boldsymbol{y}}[\sin (k z-\omega t)-\sin (k z+\omega t)]=-2 Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \hat{\boldsymbol{y}} \cos (k z) \sin (\omega t) .
\end{gathered}
$$

b) Denoting the electromagnetic energy-density at point z and instant t by $\mathcal{E}(z, t)$, we will have

$$
\begin{aligned}
\mathcal{E}(z, t)=\frac{1}{2} \varepsilon_{0} \boldsymbol{E}^{2}(z, t)+\frac{1}{2} \mu_{\mathrm{o}} \boldsymbol{H}^{2}(z, t) & =2 \varepsilon_{\mathrm{o}} E_{\mathrm{o}}^{2} \sin ^{2}(k z) \cos ^{2}(\omega t)+2 \mu_{\mathrm{o}} Z_{\mathrm{o}}^{-2} E_{\mathrm{o}}^{2} \cos ^{2}(k z) \sin ^{2}(\omega t) \\
& =2 \varepsilon_{\mathrm{o}} E_{\mathrm{o}}^{2} \sin ^{2}(k z)\left(1-\sin ^{2} \omega t\right)+2 \varepsilon_{0} E_{\mathrm{o}}^{2} \cos ^{2}(k z) \sin ^{2}(\omega t) \\
& =2 \varepsilon_{0} E_{\mathrm{o}}^{2}\left[\sin ^{2}(k z)+\cos (2 k z) \sin ^{2}(\omega t)\right] .
\end{aligned}
$$

Integration of the above energy-density over z from 0 to L yields $L / 2$ for $\sin ^{2}(k z)$ and zero for $\cos (2 k z)$. The total energy contained in the cavity thus turns out to be $\varepsilon_{0} E_{0}^{2} A L$, independent of time. The number of photons is now found to be $\mathscr{N}=\varepsilon_{0} E_{0}^{2} A L /(\hbar \omega)$. At any given moment, one-half of these photons may be said to be propagating from left to right, while the remaining half travel from right to left.
c) At $z=0$, the magnetic field at the mirror surface is $\boldsymbol{H}\left(z=0^{+}, t\right)=-2 Z_{o}^{-1} E_{\mathrm{o}} \hat{\boldsymbol{y}} \sin (\omega t)$. Since the fields inside a perfect conductor are always zero, Maxwell's boundary conditions require that $J_{s}(z=0, t)=2 Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \hat{\boldsymbol{x}} \sin (\omega t)$. The effective magnetic field acting on this surface-current is the average of the H-fields immediately in front of and immediately beneath the surface, that is, $\boldsymbol{H}_{\text {eff }}(z=0, t)=-Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \hat{\boldsymbol{y}} \sin (\omega t)$. The Lorentz force-density exerted by this field on the surface current \boldsymbol{J}_{s} is, therefore, going to be

$$
\boldsymbol{J}_{S}(z=0, t) \times \mu_{\mathrm{o}} \boldsymbol{H}_{\mathrm{eff}}(z=0, t)=2 Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \sin (\omega t) \hat{\boldsymbol{x}} \times\left[-\mu_{\mathrm{o}} Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \sin (\omega t) \hat{\boldsymbol{y}}\right]=-2 \varepsilon_{\mathrm{o}} E_{\mathrm{o}}^{2} \sin ^{2}(\omega t) \hat{\mathbf{z}} .
$$

Time-averaging and integration over the surface area of the mirror yields a total force equal to $\langle\boldsymbol{F}(z=0, t)\rangle=-\varepsilon_{0} E_{0}^{2} A \hat{\mathbf{z}}$. A similar procedure (or an argument from symmetry) yields the force on the mirror located at $z=L$ as $\langle\boldsymbol{F}(z=L, t)\rangle=\varepsilon_{0} E_{0}^{2} A \hat{\mathbf{z}}$.
d) The work done by radiation pressure in moving the mirror a distance Δz adds to the kinetic energy of the mirror. Since the mirror is stationary at first, the work done in moving it from $z=L$ to $z=L+\Delta z$ must be equal to its final kinetic energy, that is, $1 / 2 M V^{2}=F_{z} \Delta z=\varepsilon_{0} E_{0}^{2} A \Delta z$.
e) For the forward propagating wave inside the cavity, the Poynting vector is given by

$$
\boldsymbol{S}(z, t)=\boldsymbol{E}(z, t) \times \boldsymbol{H}(z, t)=E_{\mathrm{o}} \sin (k z-\omega t) \hat{\boldsymbol{x}} \times Z_{\mathrm{o}}^{-1} E_{\mathrm{o}} \sin (k z-\omega t) \hat{\boldsymbol{y}}=Z_{\mathrm{o}}^{-1} E_{\mathrm{o}}^{2} \sin ^{2}(k z-\omega t) \hat{\mathbf{z}} .
$$

The electromagnetic momentum density is given by $\boldsymbol{S}(z, t) / c^{2}$. Integration over the volume of the cavity thus yields the total momentum content of the forward-propagating wave as $1 / 2 \varepsilon_{0} E_{0}^{2} A L / c$. Upon reflection from the mirror located at $z=L$, twice this momentum will be transferred to the mirror during the time interval $1 / 2 \Delta t=L / c$, which is the time it takes for the entire forward-propagating wave within the cavity to bounce off the front mirror. By this time, the other plane-wave has turned around and is now propagating in the forward direction, so, during the next $1 / 2 \Delta t$ interval, another transfer of momentum (from the electromagnetic field to the front mirror) takes place. The total momentum acquired by the front mirror between $t=t_{\mathrm{o}}$ and $t=t_{0}+2 L / c$ is, therefore, given by $M V=2 \varepsilon_{0} E_{0}^{2} A L / c=\varepsilon_{0} E_{0}{ }^{2} A \Delta t$. This result is also consistent with Newton's law, $\boldsymbol{F}=\mathrm{d} \boldsymbol{p} / \mathrm{d} t$, when applied to the front mirror under the influence of the electromagnetic force $\langle\boldsymbol{F}(z=L, t)\rangle=\varepsilon_{0} E_{\mathrm{o}}^{2} A \hat{\mathbf{z}}$. Alternatively, one could obtain the momentum of the mirror by multiplying the total number of photons \mathcal{N}, computed in part (b), with twice the momentum of each photon, $\hbar \omega / c$, thus arriving at $M V=2 \mathscr{N} \hbar \omega / c=2 \varepsilon_{0} E_{0}{ }^{2} A L / c$.
f) Since $L=N \lambda / 2=\pi c N / \omega$, we have $\mathrm{d} L / \mathrm{d} \omega=-\pi c N / \omega^{2}=-L / \omega$. Therefore, $\Delta z / L=-\Delta \omega / \omega$.
g) In part (d) we found that $1 / 2 M V^{2}=\varepsilon_{0} E_{0}{ }^{2} A \Delta z$. Writing $1 / 2 M V^{2}=1 / 2(M V) V$ and substituting for the momentum $M V$ the result obtained in part (e), namely, $M V=\varepsilon_{0} E_{0}{ }^{2} A \Delta t$, we find $\Delta z=1 / 2 V \Delta t$. This should not come as a surprise, however, considering that over the short time interval Δt, the radiation pressure exerts a constant force on the front mirror, resulting in a constant acceleration a. Since $\Delta z=1 / 2 a(\Delta t)^{2}$ and $V=a \Delta t$, it is obvious that Δz must be equal to $1 / 2 V \Delta t$. None of the results obtained thus far require the restriction of Δt to the specific value $2 L / c$; in other words, we expect to find the same results for any sufficiently small Δt.

Next, we substitute the above Δz into the expression for $\Delta \omega / \omega$ obtained in part (f). We find

$$
\Delta \omega / \omega=-\Delta z / L=-1 / 2 V \Delta t / L=-V / c .
$$

This is the formula for the Doppler shift upon reflection from a flat mirror moving at the constant velocity $1 / 2 V \hat{\mathbf{z}}$, which, in the system under consideration, is the average mirror velocity during the time interval $\Delta t=2 L / c$. What is special about $\Delta t=2 L / c$ is that it is the time interval during which each and every photon inside the cavity gets exactly one chance to bounce off the front mirror. Without this restriction, one does not arrive at the Doppler relation between $\Delta \omega$ and the (average) mirror velocity. The red-shift (or cooling down) of the photons is a direct consequence of their transfer of energy and momentum to the free-standing mirror.

At much later times, when $t \gg t_{0}$, the free mirror will have an initial velocity V in the beginning of each cycle, reaching $V+\delta V$ after a time interval $\Delta t=2 L / c$. (L is now the length of the cavity in the beginning of the cycle.) The increase in the kinetic energy of the mirror will then be $F_{z} \Delta z=M V \delta V$, whereas the change in the mirror's momentum will be $F_{z} \Delta t=M \delta V$. Consequently, $\Delta z=V \Delta t$ and $\Delta \omega / \omega=-\Delta z / L=-2 V / c$, which is the Doppler shift upon reflection from a mirror moving at an average velocity $V+1 / 2 \delta V$, provided, of course, that δV is negligible compared to V.

