Problem 1) a) The E - and H-fields of the incident plane-wave are given by

$$
\begin{align*}
& \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{p_{0}}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right] ; \tag{1a}\\
& \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{p_{0}}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right] . \tag{1b}
\end{align*}
$$

The dispersion relation in free space is $k^{2}=(\omega / c)^{2}$. Therefore,

$$
\begin{equation*}
\boldsymbol{k}^{(\mathrm{i})}=k_{x} \hat{\boldsymbol{x}}+k_{z} \hat{\mathbf{z}}=(\omega / c)(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) . \tag{2}
\end{equation*}
$$

The incident E-field amplitude, as shown in the figure, is given by

$$
\begin{equation*}
\boldsymbol{E}_{p_{0}}^{(\mathrm{i})}=E_{p_{0}}(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}) . \tag{3}
\end{equation*}
$$

It may be readily verified that this E-field satisfies Maxwell's first equation, namely, $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$, which is equivalent to $\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{E}_{p_{0}}^{(\mathrm{i})}=0$. As for the incident H-field, Maxwell's third equation, $\boldsymbol{\nabla} \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, yields

$$
\begin{align*}
\mathrm{i} \boldsymbol{k}^{(\mathrm{i})} \times \boldsymbol{E}_{p_{0}}^{(\mathrm{i})}=\mathrm{i} \omega \mu_{0} \boldsymbol{H}_{p_{0}}^{(\mathrm{i})} & \rightarrow(\omega / c)(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \times E_{p_{0}}(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}})=\omega \mu_{0} \boldsymbol{H}_{p_{0}}^{(\mathrm{i})} \\
& \rightarrow \boldsymbol{H}_{p_{0}}^{(\mathrm{i})}=\left(E_{p_{0}} / Z_{\mathrm{o}}\right) \hat{\boldsymbol{y}} . \tag{4}
\end{align*}
$$

b) The E - and H-fields of the reflected wave are written

$$
\begin{align*}
& \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{p_{0}}^{(\mathrm{r})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right] \tag{5a}\\
& \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{p_{0}}^{(\mathrm{r})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{r}-\omega t\right)\right] . \tag{5b}
\end{align*}
$$

The reflected k-vector is similar to the incident k-vector, except for the sign of k_{z}, that is,

$$
\begin{equation*}
\boldsymbol{k}^{(\mathrm{r})}=k_{x} \hat{\boldsymbol{x}}-k_{z} \hat{\mathbf{z}}=(\omega / c)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) . \tag{6}
\end{equation*}
$$

The reflected E-field amplitude must cancel out the tangential component of the incident E-field at the surface of the perfect conductor, as there cannot be any E-fields inside the conductor. We thus have

$$
\begin{equation*}
\boldsymbol{E}_{p_{0}}^{(\mathrm{r})}=-E_{p_{0}}(\cos \theta \hat{\boldsymbol{x}}+\sin \theta \hat{\mathbf{z}}) . \tag{7}
\end{equation*}
$$

As before, it may be readily verified that the above E-field satisfies Maxwell's first equation, namely, $\boldsymbol{k}^{(\mathrm{r})} \cdot \boldsymbol{E}_{p_{0}}^{(\mathrm{r})}=0$. The reflected H-field is, once again, obtained from Maxwell's third equation, as follows:

$$
\begin{align*}
\mathrm{i} \boldsymbol{k}^{(\mathrm{r})} \times \boldsymbol{E}_{p_{0}}^{(\mathrm{r})}=\mathrm{i} \omega \mu_{0} \boldsymbol{H}_{p_{0}}^{(\mathrm{r})} & \rightarrow(\omega / c)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) \times E_{p_{0}}(-\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}})=\omega \mu_{\mathrm{o}} \boldsymbol{H}_{p_{0}}^{(\mathrm{r})} \\
& \rightarrow \boldsymbol{H}_{p_{0}}^{(\mathrm{r})}=\left(E_{p_{0}} / Z_{o}\right) \hat{\boldsymbol{y}} . \tag{8}
\end{align*}
$$

c) The rate of flow of energy per unit cross-sectional area per unit time is given by the timeaveraged Poynting vector, namely,

$$
\begin{align*}
& <\boldsymbol{S}^{(\mathrm{i})}(\boldsymbol{r}, t)>=\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E}_{p_{0}}^{(\mathrm{i})} \times \boldsymbol{H}_{p_{0}}^{(\mathrm{i})^{*}}\right]=\frac{1}{2} \operatorname{Re}\left[E_{p_{0}}(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}) \times\left(E_{p_{0}}^{*} / Z_{o}\right) \hat{\boldsymbol{y}}\right] \\
& =\frac{\left|E_{p_{0}}\right|^{2}}{2 Z_{\mathrm{o}}}(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \text {. } \tag{9}\\
& <\boldsymbol{S}^{(\mathrm{r})}(\boldsymbol{r}, t)>=\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E}_{p_{0}}^{(\mathrm{r})} \times \boldsymbol{H}_{p_{0}}^{(\mathrm{r})^{*}}\right]=\frac{1}{2} \operatorname{Re}\left[-E_{p_{0}}(\cos \theta \hat{\boldsymbol{x}}+\sin \theta \hat{\mathbf{z}}) \times\left(E_{p_{0}}^{*} / Z_{o}\right) \hat{\boldsymbol{y}}\right] \\
& =\frac{\left|E_{p_{0}}\right|^{2}}{2 Z_{o}}(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) . \tag{10}
\end{align*}
$$

The incident and reflected waves are seen to have a time-averaged Poynting vector $<\boldsymbol{S}>$ directed along the corresponding k-vector. The magnitudes of these Poynting vectors, however, are the same, namely, $\left|E_{p o}\right|^{2} /\left(2 Z_{0}\right)$. Therefore, the incident and reflected energy fluxes are identical.
d) The surface-current-density $\boldsymbol{J}_{s}(x, y, t)$ is equal in magnitude and perpendicular in direction to the total H-field at the surface of the perfect conductor. Taking into account the right-hand rule relating the direction of the surface current to that of the H-field, we will have

$$
\begin{align*}
J_{s}(x, y, t) & =\left[H_{y}^{(\mathrm{i})}(x, y, z=0, t)+H_{y}^{(\mathrm{r})}(x, y, z=0, t)\right] \hat{\boldsymbol{x}} \\
& =2\left(E_{p_{0}} / Z_{o}\right) \exp \left[\mathrm{i}\left(k_{x} x-\omega t\right)\right] \hat{\boldsymbol{x}}=2\left(E_{p_{0}} / Z_{o}\right) \exp [\mathrm{i}(\omega / c)(x \sin \theta-c t)] \hat{x} . \tag{11}
\end{align*}
$$

e) The surface-charge-density $\sigma_{s}(x, y, t)$ is given by the discontinuity in the perpendicular component of the D-field, that is,

$$
\begin{align*}
\sigma_{s}(x, y, t) & =-\varepsilon_{0}\left[E_{z}^{(\mathrm{i})}(x, y, z=0, t)+E_{z}^{(\mathrm{r})}(x, y, z=0, t)\right] \\
& =2 \varepsilon_{0} E_{p_{0}} \sin \theta \exp \left[\mathrm{i}\left(k_{x} x-\omega t\right)\right]=2 \varepsilon_{0} E_{p_{0}} \sin \theta \exp [\mathrm{i}(\omega / c)(x \sin \theta-c t)] . \tag{12}
\end{align*}
$$

f) Substituting in the continuity equation for \boldsymbol{J}_{s} from Eq.(11) and for σ_{s} from Eq.(12), we find

$$
\begin{align*}
& \partial J_{s x} / \partial x+\partial \sigma_{s} / \partial t=\left[2 \mathrm{i}(\omega / c) \sin \theta\left(E_{p_{0}} / Z_{o}\right)-2 \mathrm{i} \omega \varepsilon_{0} E_{p_{0}} \sin \theta\right] \exp [\mathrm{i}(\omega / c)(x \sin \theta-c t)] \\
& =2 \mathrm{i} \omega\left[\left(c Z_{o}\right)^{-1}-\varepsilon_{0}\right] E_{p_{0}} \sin \theta \exp [\mathrm{i}(\omega / c)(x \sin \theta-c t)]=0 . \tag{13}
\end{align*}
$$

The continuity equation is thus satisfied by the induced surface-charge and surface-current.

Problem 2) a) The E - and H-fields of the incident plane-wave are given by

$$
\begin{align*}
& \boldsymbol{E}(\boldsymbol{r}, t)=\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right] ; \tag{1a}\\
& \boldsymbol{H}(\boldsymbol{r}, t)=\boldsymbol{H}_{\mathrm{so}}^{(\mathrm{i})} \exp \left[\mathrm{i}\left(\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{r}-\omega t\right)\right] . \tag{1b}
\end{align*}
$$

The dispersion relation in free space is $k^{2}=(\omega / c)^{2}$. Therefore,

$$
\begin{equation*}
\boldsymbol{k}^{(\mathrm{i})}=k_{x} \hat{\boldsymbol{x}}+k_{z} \hat{\mathbf{z}}=(\omega / c)(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \tag{2}
\end{equation*}
$$

The incident E-field amplitude, as shown in the figure, is given by

$$
\begin{equation*}
\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{i})}=E_{\mathrm{so}}^{(\mathrm{i})} \hat{\boldsymbol{y}} . \tag{3}
\end{equation*}
$$

It may be readily verified that this E-field satisfies Maxwell's first equation, namely, $\boldsymbol{\nabla} \cdot \boldsymbol{E}=0$, which is equivalent to $\boldsymbol{k}^{(\mathrm{i})} \cdot \boldsymbol{E}_{\mathrm{so}}^{(\mathrm{i})}=0$. As for the incident H-field, Maxwell's third equation, $\nabla \times \boldsymbol{E}=-\partial \boldsymbol{B} / \partial t$, yields

$$
\begin{align*}
\mathrm{i} \boldsymbol{k}^{(\mathrm{i})} \times \boldsymbol{E}_{\mathrm{so}}^{(\mathrm{i})}=\mathrm{i} \omega \mu_{0} \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{i})} & \rightarrow(\omega / c)(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) \times E_{\mathrm{so}}^{(\mathrm{i})} \hat{\boldsymbol{y}}=\omega \mu_{\mathrm{o}} \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{i})} \\
& \rightarrow \quad \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{i})}=-\left(E_{\mathrm{so}}^{(\mathrm{i})} / Z_{o}\right)(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}) . \tag{4}
\end{align*}
$$

A similar treatment yields for the reflected plane-wave,

$$
\begin{gather*}
\boldsymbol{k}^{(\mathrm{r})}=k_{x} \hat{\boldsymbol{x}}-k_{z} \hat{\mathbf{z}}=(\omega / c)(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}), \tag{5}\\
\boldsymbol{E}_{s_{0}}^{(\mathrm{r})}=E_{s_{0}}^{(\mathrm{r})} \hat{\boldsymbol{y}}, \tag{6}\\
\boldsymbol{H}_{s 0}^{(\mathrm{r})}=\left(E_{s_{0}}^{(\mathrm{r})} / Z_{o}\right)(\cos \theta \hat{\boldsymbol{x}}+\sin \theta \hat{\mathbf{z}}) . \tag{7}
\end{gather*}
$$

As for the transmitted beam, the dispersion relation in the dielectric medium is $k^{2}=(\omega / c)^{2} n^{2}(\omega)$; also, in accordance with Snell's law, we must have $k_{x}^{(\mathrm{t})}=k_{x}^{(\mathrm{i})}$ and $k_{y}^{(\mathrm{t})}=k_{y}^{(\mathrm{i})}=0$. Therefore,

$$
\begin{equation*}
\boldsymbol{k}^{(\mathrm{t})}=k_{x}^{(\mathrm{i})} \hat{\boldsymbol{x}}+k_{z}^{(\mathrm{t})} \hat{\mathbf{z}}=(\omega / c)\left[\sin \theta \hat{\boldsymbol{x}}+\sqrt{n^{2}(\omega)-\sin ^{2} \theta} \hat{\mathbf{z}}\right] . \tag{8}
\end{equation*}
$$

Next, we obtain the transmitted E-field using the continuity of tangential \boldsymbol{E} at the interface:

$$
\begin{equation*}
\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{t})}=\left(E_{\mathrm{so}}^{(\mathrm{i})}+E_{\mathrm{so}}^{(\mathrm{r})}\right) \hat{\boldsymbol{y}} . \tag{9}
\end{equation*}
$$

Subsequently, the transmitted H-field is obtained from Maxwell's third equation, as follows:

$$
\begin{align*}
\boldsymbol{k}^{(\mathrm{t})} \times \boldsymbol{E}_{\mathrm{so}}^{(\mathrm{t})}=\omega \mu_{\mathrm{o}} \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{t})} & \rightarrow(\omega / c)\left[\sin \theta \hat{\boldsymbol{x}}+\sqrt{n^{2}(\omega)-\sin ^{2} \theta} \hat{\mathbf{z}}\right] \times E_{\mathrm{so}}^{(\mathrm{t})} \hat{\boldsymbol{y}}=\omega \mu_{\mathrm{o}} \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{t})} \\
& \rightarrow \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{t})}=-\left(E_{\mathrm{so}}^{(\mathrm{t})} / Z_{o}\right)\left[\sqrt{n^{2}(\omega)-\sin ^{2} \theta} \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}\right] . \tag{10}
\end{align*}
$$

b) Continuity of the tangential E-field is already assured by means of Eq.(9). The only remaining constraint involves the tangential H-field, whose continuity equation is written

$$
\begin{equation*}
H_{x}^{(\mathrm{i})}+H_{x}^{(\mathrm{r})}=H_{x}^{(\mathrm{t})} \rightarrow-\left(E_{\mathrm{so}}^{(\mathrm{i})} / Z_{\mathrm{o}}\right) \cos \theta+\left(E_{\mathrm{so}}^{(\mathrm{r})} / Z_{\mathrm{o}}\right) \cos \theta=-\left(E_{\mathrm{so}}^{(\mathrm{t})} / Z_{\mathrm{o}}\right) \sqrt{n^{2}(\omega)-\sin ^{2} \theta} . \tag{11}
\end{equation*}
$$

The Fresnel reflection and transmission coefficients, defined as $\rho_{\mathrm{s}}=E_{\mathrm{so}}^{(\mathrm{r})} / E_{\mathrm{so}}^{(\mathrm{i})}$ and $\tau_{\mathrm{s}}=E_{\mathrm{so}}^{(\mathrm{t})} / E_{\mathrm{so}}^{(\mathrm{i})}$, may now be used in conjunction with Eqs. (9) and (11) to yield

$$
\begin{equation*}
-E_{\mathrm{so}}^{(\mathrm{i})} \cos \theta+\rho_{\mathrm{s}} E_{\mathrm{so}}^{(\mathrm{i})} \cos \theta=-\left(1+\rho_{s}\right) E_{\mathrm{so}}^{(\mathrm{i})} \sqrt{n^{2}(\omega)-\sin ^{2} \theta} . \tag{12}
\end{equation*}
$$

Solving the above equation for ρ_{s}, we find

$$
\begin{equation*}
\rho_{s}=\frac{\cos \theta-\sqrt{n^{2}(\omega)-\sin ^{2} \theta}}{\cos \theta+\sqrt{n^{2}(\omega)-\sin ^{2} \theta}} . \tag{13}
\end{equation*}
$$

From Eq.(9) and the definitions of the Fresnel coefficients, it is obvious that $\tau_{s}=1+\rho_{s}$; therefore,

$$
\begin{equation*}
\tau_{s}=\frac{2 \cos \theta}{\cos \theta+\sqrt{n^{2}(\omega)-\sin ^{2} \theta}} . \tag{14}
\end{equation*}
$$

c) The rate-of-flow of energy per unit cross-sectional area per unit time for each of the three plane-waves is given by the corresponding time-averaged Poynting vector, as follows:

$$
\begin{align*}
<\boldsymbol{S}^{(\mathrm{i})}(\boldsymbol{r}, t)> & =\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{i})} \times \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{i})^{*}}\right]=-\frac{1}{2} \operatorname{Re}\left[E_{\mathrm{so}}^{(\mathrm{i})} \hat{\boldsymbol{y}} \times\left(E_{\mathrm{so}}^{\left(\mathrm{i} *^{*}\right.} / Z_{\mathrm{o}}\right)(\cos \theta \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}})\right. \\
& =\frac{\left|E_{\mathrm{so}}^{(\mathrm{i})}\right|^{2}}{2 Z_{\mathrm{o}}}(\sin \theta \hat{\boldsymbol{x}}+\cos \theta \hat{\mathbf{z}}) . \tag{15}\\
<\boldsymbol{S}^{(\mathrm{r})}(\boldsymbol{r}, t)> & =\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{r})} \times \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{r})}{ }^{*}\right]=\frac{1}{2} \operatorname{Re}\left[E_{\mathrm{so}}^{(\mathrm{r})} \hat{\boldsymbol{y}} \times\left(E_{\mathrm{so}}^{(\mathrm{r})^{*}} / Z_{\mathrm{o}}\right)(\cos \theta \hat{\boldsymbol{x}}+\sin \theta \hat{\mathbf{z}})\right. \\
& =\frac{\left|E_{\mathrm{so}}^{(\mathrm{r})}\right|^{2}}{2 Z_{\mathrm{o}}}(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}})=\left|\rho_{\mathrm{s}}\right|^{2} \frac{\left|E_{\mathrm{so}}^{(\mathrm{i})}\right|^{2}}{2 Z_{\mathrm{o}}}(\sin \theta \hat{\boldsymbol{x}}-\cos \theta \hat{\mathbf{z}}) . \tag{16}\\
<\boldsymbol{S}^{(\mathrm{t})}(\boldsymbol{r}, t)> & =\frac{1}{2} \operatorname{Re}\left[\boldsymbol{E}_{\mathrm{so}}^{(\mathrm{t})} \times \boldsymbol{H}_{\mathrm{so}}^{(\mathrm{t})^{*}}\right]=-\frac{1}{2} \operatorname{Re}\left[E_{\mathrm{so}}^{(\mathrm{t})} \hat{\boldsymbol{y}} \times\left(E_{\mathrm{so}}^{(\mathrm{t})^{*}} / Z_{\mathrm{o}}\right)\left[\sqrt{n^{2}(\omega)-\sin ^{2} \theta} \hat{\boldsymbol{x}}-\sin \theta \hat{\mathbf{z}}\right]\right. \\
& =\frac{\left|E_{\mathrm{so}}^{(\mathrm{t})}\right|^{2}}{2 Z_{\mathrm{o}}}\left[\sin \theta \hat{\boldsymbol{x}}+\sqrt{n^{2}(\omega)-\sin ^{2} \theta} \hat{\mathbf{z}}\right] \\
& =\left|\tau_{s}\right|^{2} \frac{n(\omega)\left|E_{\mathrm{so}}^{(\mathrm{i})}\right|^{2}}{2 Z_{\mathrm{o}}}\left(\sin \theta^{\prime} \hat{\boldsymbol{x}}+\cos \theta^{\prime} \hat{\mathbf{z}}\right) . \tag{17}
\end{align*}
$$

To verify the conservation of energy, consider an incident beam whose cross-sectional diameter in the $x z$-plane is D. The footprint of this beam on the x-axis will then be $D / \cos \theta$, resulting in a transmitted beam whose cross-sectional diameter in the $x z$-plane is $D\left(\cos \theta^{\prime} / \cos \theta\right)$. Considering the various Poynting vectors in Eqs.(15)-(17), and the fact that the reflected beam diameter in the $x z$-plane remains equal to D, we must show that the following identity holds:

$$
\begin{equation*}
\left|\rho_{s}\right|^{2}+\left(\cos \theta^{\prime} / \cos \theta\right) n(\omega)\left|\tau_{s}\right|^{2}=1 \tag{18}
\end{equation*}
$$

Substitution from Eqs.(13) and (14) into Eq.(18), and noting that $n(\omega) \cos \theta^{\prime}=\sqrt{n^{2}(\omega)-\sin ^{2} \theta}$, then yields

$$
\begin{equation*}
\frac{\left[\cos \theta-\sqrt{n^{2}(\omega)-\sin ^{2} \theta}\right]^{2}}{\left[\cos \theta+\sqrt{n^{2}(\omega)-\sin ^{2} \theta}\right]^{2}}+\frac{\left[\sqrt{n^{2}(\omega)-\sin ^{2} \theta} / \cos \theta\right](2 \cos \theta)^{2}}{\left[\cos \theta+\sqrt{n^{2}(\omega)-\sin ^{2} \theta}\right]^{2}}=1 . \tag{19}
\end{equation*}
$$

The energy fluxes of the reflected and transmitted beams thus add up to that of he incident beam, proving that electromagnetic energy in the present problem is conserved.

