A semi-infinite slab of transparent, non-magnetic glass (refractive index $=n$ ) has a perfect antireflection coating applied to its entrance facet. A monochromatic, linearly-polarized plane-wave arrives at the slab at normal incidence, as shown. The incidence medium is free space, the vacuum wavelength of the light is $\lambda_{0}$, and the incident $E$-field is along the $x$-axis.
a) What is the relation between the incident $E$ - and $H$-fields, $E_{\mathrm{i}}$ and $H_{\mathrm{i}}$, in terms of the impedance of freespace, $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ ?
b) What is the relation between the fields $E_{\mathrm{t}}, H_{\mathrm{t}}$ transmitted into the slab in terms of $Z_{0}$ and $n$ ?
c) Without making any assumptions about the structure of the antireflection coating, simply knowing that the optical energy of the beam
 passes entirely from free space into the slab, determine the relation between the incident and transmitted $E$-fields $E_{\mathrm{i}}$ and $E_{\mathrm{t}}$.
d) Assume now that, instead of a plane-wave, the incident beam is a pulse of light having the same central wavelength $\lambda_{0}$ as before. Moreover, the front-facet coating is effective as a perfect anti-reflection coating for the entire pulse, and the semi-infinite slab is free from dispersion, so that, inside the slab, the pulse propagates with velocity $c / n$, as shown. What are the $E$ - and $H$-field
 energies inside the slab? Is the total $E$-field energy of the pulse equal to its total $H$-field energy? Is the pulse energy conserved before and after incidence?
Hint: You may find the vector identity $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}$ useful.

A linearly-polarized, monochromatic plane-wave propagates along the $x$-axis, with its $E$-field amplitude given as $\boldsymbol{E}(x, t)=E_{0} \cos \{\omega[t-n(\omega) x / c]\} \widehat{\boldsymbol{y}}$. The host medium is a homogeneous, linear, isotropic, non-magnetic (i.e., $\mu(\omega)=1$ ), transparent dielectric, whose frequencydependent refractive index is specified as $n(\omega)=\sqrt{\varepsilon(\omega)}$.
a) Find the magnetic field $\boldsymbol{H}(x, t)$ of the plane-wave in terms of $E_{0}, c, \omega, n(\omega)$, and the impedance of free space $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$.
b) Find the Poynting vector $\boldsymbol{S}(x, t)$ of the above plane-wave, then determine the time-averaged rate-of-flow of optical energy (per unit area per unit time) along the $x$-axis.
c) Assume a second plane-wave, identical with the one above except for its frequency $\omega^{\prime}$ differing slightly from $\omega$, is co-propagating with the above plane-wave. Write an expression for the combined $E$-field of the superposed plane-waves. From this expression, identify the carrier and the envelope of the beat waveform. In terms of $c, \omega_{c}=1 / 2\left(\omega+\omega^{\prime}\right), \Delta \omega=\omega^{\prime}-\omega$, $n\left(\omega_{c}\right)$ and $\mathrm{d} n(\omega) / \mathrm{d} \omega$, what are the phase and group velocities of the combined waveform?

Hint: You may find the trigonometric identity $\cos a+\cos b=2 \cos [1 / 2(a+b)] \cos [1 / 2(a-b)]$ useful.

