Summer 2016 Written Comprehensive Exam Opti 501

System of units: MKSA

A monochromatic plane electromagnetic wave propagates in free space along the z-axis. The beam is linearly polarized along the x-axis, having E-field amplitude $E_{0} \widehat{\boldsymbol{x}}$ and H-field amplitude $H_{0} \widehat{\boldsymbol{y}}$. In general, the field amplitudes are complex-valued; for instance, $E_{0}=\left|E_{0}\right| \exp \left(\mathrm{i} \varphi_{0}\right)$.
3 Pts a) In terms of the frequency ω_{0} of the oscillations, the speed c of light in vacuum, the impedance Z_{0} of free space, and the E-field amplitude and phase, $\left|E_{0}\right|$ and φ_{0}, write expressions for the real-valued \boldsymbol{E} and \boldsymbol{H} fields as functions of the space-time coordinates (x, y, z, t).

3 Pts
b) Determine the rate of flow of electromagnetic energy (per unit cross-sectional area per unit time) at a given instant of time, say, $t=t_{0}$, at two points P_{1} and P_{2} located at $(x, y, z)=$ $\left(0,0, z_{1}\right)$ and $(x, y, z)=\left(0,0, z_{2}\right)$, where z_{1} and z_{2} are two arbitrary points along the z-axis.

4 Pts
c) According to your answer to part (b), the rate of flow of energy at $\left(P_{1}, t_{0}\right)$ differs from that at (P_{2}, t_{0}) - unless the distance $z_{2}-z_{1}$ happens to be a half-integer-multiple of the wavelength $\lambda_{0}=2 \pi c / \omega$. Identify where the missing energy has gone. (You must provide a detailed answer that accounts for the missing energy with perfect accuracy.)

Hint: The following identities will be helpful:

$$
\cos ^{2} x=1 / 2(1+\cos 2 x)
$$

$$
\begin{array}{ll}
\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) ; & \sin x-\sin y=2 \sin \left(\frac{x-y}{2}\right) \cos \left(\frac{x+y}{2}\right) \\
\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right) ; & \cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)
\end{array}
$$

Summer 2016 Written Comprehensive Exam Opti 501

System of units: MKSA

A plane electromagnetic wave of frequency ω arrives at normal incidence at the interface between a transparent dielectric medium of refractive index n_{0} and an absorptive medium specified by its complex refractive index $n+\mathrm{i} \kappa$. The incident beam is linearly polarized, having E-field amplitude $E_{0} \widehat{\boldsymbol{x}}$ and H-field amplitude $H_{0} \widehat{\boldsymbol{y}}$. Assume $\mu(\omega)=1$ for both media, the speed of light in vacuum is $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$, and the impedance of
 free space is $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$.

2 Pts

$$
2 \text { Pts }
$$

a) Write expressions for the \boldsymbol{E} and \boldsymbol{H} fields in the semi-infinite medium of incidence (transparent dielectric), and in the semi-infinite absorptive substrate.
b) Match the boundary conditions at the interface between the two media (located at $z=0$), then proceed to determine the Fresnel reflection and transmission coefficients at the boundary.
c) Use the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ to determine the rate of flow of electromagnetic energy (per unit cross-sectional area, per unit time) in the incident, reflected, and transmitted beams at the interface between the two media (i.e., at $z=0^{+}$and $z=0^{-}$).
d) Confirm that the difference between the incident and reflected optical energies is in fact equal to the energy captured within the absorptive substrate.

