## Spring 2015 Written Comprehensive Exam Opti 501

## System of units: MKSA

A monochromatic plane-wave of frequency  $\omega$  traveling in free space is reflected at normal incidence from the flat surface of a perfect conductor. Denoting the speed of light in vacuum by  $c = 1/\sqrt{\mu_0 \varepsilon_0}$  and the impedance of free space by  $Z_0 = \sqrt{\mu_0/\varepsilon_0}$ , the incident and reflected *E*- and *H*-fields are given by



2 Pts a) Write expressions for the total *E*-field and total *H*-field amplitudes in the half-space  $z \le 0$ .

**Hint**:  $\cos a + \cos b = 2\cos[(a+b)/2]\cos[(a-b)/2];$   $\cos a - \cos b = -2\sin[(a+b)/2]\sin[(a-b)/2].$ 

- 2 Pts b) Identify locations along the *z*-axis where the *E*-field is exactly equal to zero, and also locations where the *H*-field is exactly zero.
- 3 Pts c) Determine the local energy densities of the *E* and *H*-fields in the half-space  $z \le 0$ .
- 3 Pts d) Find the total Poynting vector S(r, t) in the half-space  $z \le 0$ , and explain the behavior of the electromagnetic energy as a function of time by analyzing the time-dependence of the Poynting vector in relation to the local energy densities of the *E* and *H*-fields.

**Hint**:  $2\sin(a)\cos(a) = \sin(2a)$ .

## Spring 2015 Written Comprehensive Exam Opti 501

## System of units: MKSA

Inside a homogeneous, isotropic, non-magnetic, dielectric medium of refractive index  $n(\omega)$ , a monochromatic, homogeneous plane-wave propagates along the *z*-axis. The plane-wave is linearly-polarized along the *x*-axis, and the medium is transparent, that is,  $n(\omega)$  is real and positive.

- 4 Pts a) Write expressions for the plane-wave's electric and magnetic fields, E(r, t) and H(r, t), in terms of the *E*-field amplitude  $E_0$ , the angular frequency  $\omega$ , the refractive index  $n(\omega)$ , the speed of light in vacuum *c*, and the impedance of free space  $Z_0$ .
- 2 Pts b) Express the dielectric function  $\varepsilon(\omega)$  and the electric susceptibility  $\chi(\omega)$  as functions of the refractive index  $n(\omega)$ .
- 4 Pts c) Write an expression for the polarization distribution P(r,t) in terms of  $E_0$ ,  $\omega$ , c,  $\varepsilon_0$  and  $n(\omega)$ . What are the distributions of the electric bound-charge and bound-current densities,  $\rho_{\text{bound}}(r,t)$  and  $J_{\text{bound}}(r,t)$ , in the medium?