Spring 2012 Written Comprehensive Exam

Opti 501

System of units: MKSA

a) Write Maxwell's macroscopic equations in their most complete form, including contributions from free-charge and free-current densities, as well as those from polarization and magnetization. Explain the meaning of each symbol that appears in these equations.
b) Derive the charge-current continuity equation directly from Maxwell's equations, and explain the meaning of this equation (be brief yet precise).
c) Define the bound-electric-charge and bound-electric-current densities. Use these entities to eliminate the \boldsymbol{D} and \boldsymbol{H} fields from Maxwell's equations. (In other words, rewrite Maxwell's equations with the help of bound-charge and bound-current densities in such a way that only the \boldsymbol{E} and \boldsymbol{B} fields would appear in the equations.)
d) Show that the bound-charge and bound-current densities of part (c) satisfy their own chargecurrent continuity equation.

Spring 2012 Written Comprehensive Exam

Opti 501

System of units: MKSA

Consider a homogeneous, linear, isotropic medium of permeability $\mu(\omega)=1.0$, real-valued and positive permittivity $\varepsilon(\omega)$, and refractive index $n(\omega)=\sqrt{\varepsilon(\omega)}$. Within this medium, two planewaves having equal E-field amplitudes but differing frequencies propagate along the z-axis. Both plane-waves are linearly-polarized along the x-axis, their E-field amplitudes being E_{0}, and their respective frequencies being ω_{1} and ω_{2}. The center frequency is $\omega_{0}=1 / 2\left(\omega_{1}+\omega_{2}\right)$, and the frequency difference $\Delta \omega=\left(\omega_{2}-\omega_{1}\right)$ is much smaller than ω_{0}.
a) Write expressions for the real-valued E - and H-field distributions of both plane-waves as functions of the space-time coordinates (x, y, z, t).
b) Write a complete expression for the rate of flow of electromagnetic energy (per unit area per unit time) associated with the superposition of the two plane-waves. Simplify the expression so that the energy flux associated with the beat-signal of frequency $\Delta \omega$ can be clearly identified.

Hint: $\cos a \cos b=1 / 2[\cos (a+b)+\cos (a-b)]$.
c) Ignoring the rapidly-oscillating terms in the expression obtained in part (b), show that the energy flow-rate associated with the beat signal moves along the z-axis at the group velocity V_{g}, which is derived from $n(\omega)$ in the vicinity of the beat signal's center frequency ω_{0}.

