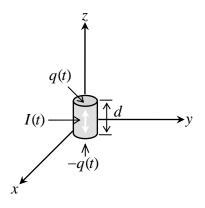

Opti 501 Prelims Questions (Spring 2010)

1) At the boundary between a transparent dielectric medium of refractive index $n_1 = \sqrt{\varepsilon_1}$ and a second medium of *complex* refractive index $n_2 + i\kappa_2 = \sqrt{\varepsilon_2} = \sqrt{\varepsilon_2' + i\varepsilon_2''}$, the Fresnel reflection coefficients for *p*- and *s*-polarized plane-waves arriving at an incidence angle θ are given by:

$$\rho_{\rm p} = E_{x0}^{\rm r} / E_{x0}^{\rm i} = \frac{n_1 \sqrt{\varepsilon_2 - n_1^2 \sin^2 \theta} - \varepsilon_2 \cos \theta}{n_1 \sqrt{\varepsilon_2 - n_1^2 \sin^2 \theta} + \varepsilon_2 \cos \theta}$$

$$\rho_{\rm s} = E_{\rm yo}^{\rm r} / E_{\rm yo}^{\rm i} = \frac{n_1 \cos\theta - \sqrt{\varepsilon_2 - n_1^2 \sin^2\theta}}{n_1 \cos\theta + \sqrt{\varepsilon_2 - n_1^2 \sin^2\theta}}$$


The relative permeabilities of both media are assumed to be unity, that is, $\mu_1 = \mu_2 = 1$. Note that the dielectric constant ε_1 of the incidence medium is real-valued and positive, whereas that of the second medium, ε_2 , is allowed to be complex-valued as well.

- 1 Pt a) What are the Fresnel reflection coefficients at normal incidence? If you found that $\rho_p = \rho_s$, explain why this result should be expected at normal incidence.
- 3 Pts b) Under what circumstances does one observe total internal reflection (TIR) in this problem? What is the critical incidence angle θ_c at which TIR begins? Do you expect the same critical angle for both p- and s-polarized plane-waves? Explain.
- 3 Pts c) Under what conditions does one arrive at Brewster's angle in this problem? Is there a Brewster's angle for s-polarized light? Why not?
- 1 Pt d) Can there be a Brewster's angle if the second medium is not transparent, that is, if $\kappa_2 \neq 0$?
- 1 Pt e) What are the limiting values of ρ_p and ρ_s as one approaches grazing incidence (i.e., when $\theta \rightarrow 90^{\circ}$)?
- 1 Pt f) Can there be total reflection (i.e., 100% reflectivity) at the interface if the second medium is not transparent, that is, if $\kappa_2 \neq 0$?

2) A thin, short wire of length *d*, placed at the origin of a spherical coordinate system, carries the sinusoidal current $I(t) = I_0 \sin(2\pi f t)$ along the *z*-axis. The scalar and vector potentials in the surrounding free-space are given by

$$\psi(\mathbf{r},t) = \frac{Z_0 I_0 d}{4\pi} \cos\theta \left\{ \frac{1}{r} \sin[2\pi f(t-\frac{r}{c})] - \left(\frac{\lambda_0}{2\pi r^2}\right) \cos[2\pi f(t-\frac{r}{c})] \right\},$$
$$A(\mathbf{r},t) = \frac{\mu_0 I_0 d}{4\pi r} \sin[2\pi f(t-\frac{r}{c})] \hat{z}.$$

In the above equations, $c=1/\sqrt{\mu_o\varepsilon_o}$ is the speed of light in vacuum, while $Z_o=\sqrt{\mu_o/\varepsilon_o}$ is the impedance of the free space. The vacuum wavelength $\lambda_o = c/f$, and, in case you would like to work in spherical coordinates, $\hat{z} = \cos\theta \hat{r} - \sin\theta \hat{\theta}$.

- 1 Pt a) Find the electric charge $\pm q(t)$ at the top and bottom of the oscillator.
- 1 Pt b) What is the strength of this electric dipole oscillator, p(t)?
- 3 Pts c) Find the magnetic field distribution H(r, t) in the entire space surrounding the oscillator.
- 3 Pts d) Find the electric field distribution E(r, t) in the entire space surrounding the oscillator.
- 2 Pts e) Determine the Poynting vector S(r, t) in the far-field region of the dipole oscillator.