Opti 501 Prelims Questions (Spring 2010)

1) At the boundary between a transparent dielectric medium of refractive index $n_{1}=\sqrt{\varepsilon_{1}}$ and a second medium of complex refractive index $n_{2}+\mathrm{i} \kappa_{2}=\sqrt{\varepsilon_{2}}=$ $\sqrt{\varepsilon_{2}^{\prime}+\mathrm{i} \varepsilon^{\prime \prime}}$, the Fresnel reflection coefficients for p - and s-polarized plane-waves arriving at an incidence angle θ are given by:

$$
\begin{aligned}
& \rho_{\mathrm{p}}=E_{x 0}^{\mathrm{r}} / E_{x 0}^{\mathrm{i}}=\frac{n_{1} \sqrt{\varepsilon_{2}-n_{1}^{2} \sin ^{2} \theta}-\varepsilon_{2} \cos \theta}{n_{1} \sqrt{\varepsilon_{2}-n_{1}^{2} \sin ^{2} \theta}+\varepsilon_{2} \cos \theta}, \\
& \rho_{\mathrm{s}}=E_{y 0}^{\mathrm{r}} / E_{y 0}^{\mathrm{i}}=\frac{n_{1} \cos \theta-\sqrt{\varepsilon_{2}-n_{1}^{2} \sin ^{2} \theta}}{n_{1} \cos \theta+\sqrt{\varepsilon_{2}-n_{1}^{2} \sin ^{2} \theta}} .
\end{aligned}
$$

The relative permeabilities of both media are assumed to be unity, that is, $\mu_{1}=\mu_{2}=1$. Note that the dielectric constant ε_{1} of the incidence medium is real-valued and positive, whereas that of the second medium, ε_{2}, is allowed to be complex-valued as well.
$1 \mathrm{Pt} \quad$ a) What are the Fresnel reflection coefficients at normal incidence? If you found that $\rho_{\mathrm{p}}=\rho_{\mathrm{s}}$, explain why this result should be expected at normal incidence.
3 Pts b) Under what circumstances does one observe total internal reflection (TIR) in this problem? What is the critical incidence angle θ_{c} at which TIR begins? Do you expect the same critical angle for both p- and s-polarized plane-waves? Explain.
3 Pts c) Under what conditions does one arrive at Brewster's angle in this problem? Is there a Brewster's angle for s-polarized light? Why not?
d) Can there be a Brewster's angle if the second medium is not transparent, that is, if $\kappa_{2} \neq 0$?
e) What are the limiting values of ρ_{p} and ρ_{s} as one approaches grazing incidence (i.e., when $\theta \rightarrow 90^{\circ}$)?

1 Pt
f) Can there be total reflection (i.e., 100% reflectivity) at the interface if the second medium is not transparent, that is, if $\kappa_{2} \neq 0$?
2) A thin, short wire of length d, placed at the origin of a spherical coordinate system, carries the sinusoidal current $I(t)=I_{0} \sin (2 \pi f t)$ along the z-axis. The scalar and vector potentials in the surrounding free-space are given by

$$
\begin{gathered}
\psi(\boldsymbol{r}, t)=\frac{Z_{0} I_{0} d}{4 \pi} \cos \theta\left\{\frac{1}{r} \sin \left[2 \pi f\left(t-\frac{r}{c}\right)\right]-\left(\frac{\lambda_{0}}{2 \pi r^{2}}\right) \cos \left[2 \pi f\left(t-\frac{r}{c}\right)\right]\right\}, \\
\boldsymbol{A (r , t)}=\frac{\mu_{0} I_{0} d}{4 \pi r} \sin \left[2 \pi f\left(t-\frac{r}{c}\right)\right] \hat{\mathbf{z}}
\end{gathered}
$$

In the above equations, $c=1 / \sqrt{\mu_{0} \varepsilon_{0}}$ is the speed of light in vacuum, while $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}$ is the impedance of the free space. The vacuum wavelength $\lambda_{0}=c / f$, and, in case you would like to work in spherical coordinates, $\hat{\boldsymbol{z}}=\cos \theta \hat{\boldsymbol{r}}-\sin \theta \hat{\boldsymbol{\theta}}$.

$1 \mathrm{Pt} \quad$ a) Find the electric charge $\pm q(t)$ at the top and bottom of the oscillator.
b) What is the strength of this electric dipole oscillator, $\boldsymbol{p}(t)$?
c) Find the magnetic field distribution $\boldsymbol{H}(\boldsymbol{r}, t)$ in the entire space surrounding the oscillator.

2 Pts
d) Find the electric field distribution $\boldsymbol{E}(\boldsymbol{r}, t)$ in the entire space surrounding the oscillator.
e) Determine the Poynting vector $\boldsymbol{S}(\boldsymbol{r}, t)$ in the far-field region of the dipole oscillator.

