Opti 501 Prelims, Spring 2008

1) A homogeneous plane wave propagates in free space along the z-axis. The oscillation frequency is $\omega=2 \pi f$, the wavelength is $\lambda_{0}=c / f$, the propagation constant is $k_{0}=2 \pi / \lambda_{0}$, the speed of light is c, and the impedance of the free space is Z_{0}. The only restrictions on the fields are those imposed by Maxwell's equations.
$(2 \mathrm{pts}) \quad$ a) Write expressions for the propagation vector σ, the E field amplitude $\boldsymbol{E}_{0}=E_{x 0} \hat{\boldsymbol{x}}+E_{y 0} \hat{y}+E_{z 0} \hat{z}$, and the H-field amplitude $\boldsymbol{H}_{0}=H_{x 0} \hat{\boldsymbol{x}}+H_{y 0} \hat{\boldsymbol{y}}+H_{z 0} \hat{\boldsymbol{z}}$, consistent with Maxwell's equations.

$(2 \mathrm{pts}) \quad$ b) What conditions should $E_{x 0}$ and $E_{y 0}$ satisfy for the plane-wave to be linearly polarized?
$\left(\begin{array}{ll}2 & \text { pts })\end{array} \quad\right.$ c) What conditions should $E_{x 0}$ and $E_{y 0}$ satisfy for the plane-wave to be circularly polarized?
$(2 \mathrm{pts})$ d) Let $E_{x 0}=\left|E_{x 0}\right| \exp \left(\mathrm{i} \phi_{x 0}\right)$ and $E_{y 0}=\left|E_{y 0}\right| \exp \left(\mathrm{i} \phi_{y 0}\right)$. Assuming $\left|E_{x 0}\right|>\left|E_{y 0}\right|$ and $\phi_{x 0}-\phi_{y 0}=90^{\circ}$, what is the polarization ellipticity η of the plane-wave?
$\left(2\right.$ pts) e) Starting from the formula $<\boldsymbol{S}(\boldsymbol{r}, t)>=1 / 2 \operatorname{Re}\left(\boldsymbol{E} \times \boldsymbol{H}^{*}\right)$ and showing every step of the calculation, derive an expression for the time-averaged Poynting vector $\langle\boldsymbol{S}(\boldsymbol{r}, t)\rangle$ in terms of $E_{x 0}$ and $E_{y 0}$.

Opti 501 Prelims, Spring 2008

2) A monochromatic plane-wave is normally incident upon a transparent dielectric slab (i.e., real-valued refractive index n_{0}). The incident beam is linearly polarized, with E-field along the x-axis, as shown. The slab's reflection and transmission coefficients are r and τ, respectively.
(2.5 pts)
a) Express the average rate of flow of optical energy $\left\langle S_{z}>\right.$ (i.e., energy per unit area per unit time) in the incident beam in terms of E_{x}.

$(2.5 \mathrm{pts})$ b) Show that the fraction of reflected optical energy is $R=|r|^{2}$, while the fraction of transmitted optical energy is $T=|\tau|^{2}$.
$(2.5 \mathrm{pts}) \quad$ c) Use the conservation of energy to derive a relationship between R and T.
$(2.5 \mathrm{pts}) \quad$ d) Use the conservation of momentum to find the radiation pressure (i.e., time-averaged force per unit area) on the slab in terms of the incident beam's $\left\langle S_{z}\right\rangle$ and the slab's R and T.
