## **Opti 501 Prelims, Spring 2008**

1) A homogeneous plane wave propagates in free space along the *z*-axis. The oscillation frequency is  $\omega = 2\pi f$ , the wavelength is  $\lambda_0 = c/f$ , the propagation constant is  $k_0 = 2\pi/\lambda_0$ , the speed of light is *c*, and the impedance of the free space is  $Z_0$ . The only restrictions on the fields are those imposed by Maxwell's equations.

(2 pts) a) Write expressions for the propagation vector  $\boldsymbol{\sigma}$ , the *E*-field amplitude  $\boldsymbol{E}_{o} = E_{xo}\hat{\boldsymbol{x}} + E_{yo}\hat{\boldsymbol{y}} + E_{zo}\hat{\boldsymbol{z}}$ , and the *H*-field amplitude  $\boldsymbol{H}_{o} = H_{xo}\hat{\boldsymbol{x}} + H_{yo}\hat{\boldsymbol{y}} + H_{zo}\hat{\boldsymbol{z}}$ , consistent with Maxwell's equations.



- (2 pts) b) What conditions should  $E_{xo}$  and  $E_{yo}$  satisfy for the plane-wave to be linearly polarized?
- (2 pts) c) What conditions should  $E_{xo}$  and  $E_{yo}$  satisfy for the plane-wave to be circularly polarized?
- (2 pts) d) Let  $E_{xo} = |E_{xo}| \exp(i\phi_{xo})$  and  $E_{yo} = |E_{yo}| \exp(i\phi_{yo})$ . Assuming  $|E_{xo}| > |E_{yo}|$  and  $\phi_{xo} \phi_{yo} = 90^{\circ}$ , what is the polarization ellipticity  $\eta$  of the plane-wave?
- (2 pts) e) Starting from the formula  $\langle S(\mathbf{r}, t) \rangle = \frac{1}{2} Re(\mathbf{E} \times \mathbf{H}^*)$  and showing every step of the calculation, derive an expression for the time-averaged Poynting vector  $\langle S(\mathbf{r}, t) \rangle$  in terms of  $E_{xo}$  and  $E_{yo}$ .

## **Opti 501 Prelims, Spring 2008**

- 2) A monochromatic plane-wave is normally incident upon a transparent dielectric slab (i.e., real-valued refractive index  $n_0$ ). The incident beam is linearly polarized, with *E*-field along the *x*-axis, as shown. The slab's reflection and transmission coefficients are *r* and  $\tau$ , respectively.
- (2.5 pts) a) Express the average rate of flow of optical energy  $\langle S_z \rangle$  (i.e., energy per unit area per unit time) in the incident beam in terms of  $E_x$ .



- (2.5 pts) b) Show that the fraction of reflected optical energy is  $R = |r|^2$ , while the fraction of transmitted optical energy is  $T = |\tau|^2$ .
- (2.5 pts) c) Use the conservation of energy to derive a relationship between R and T.
- (2.5 pts) d) Use the conservation of momentum to find the radiation pressure (i.e., time-averaged force per unit area) on the slab in terms of the incident beam's  $\langle S_z \rangle$  and the slab's *R* and *T*.