PhD Qualifying Exam, Fall 2021

Opti 501

System of units: SI (or MKSA)

1) A homogeneous plane-wave undergoes total internal reflection within a glass prism of refractive index $n=$ n_{0}, as shown. As usual, it is assumed that $\mu(\omega)=1.0$ at optical frequencies, and that $\boldsymbol{\sigma}=\boldsymbol{k} / k_{0}$ is the normalized k-vector. The resulting evanescent plane-wave in the free-space region beyond the prism (i.e., $x \geq 0$) has the following E - and H-fields:

$$
\begin{aligned}
\boldsymbol{E}(\boldsymbol{r}, t) & =\boldsymbol{E}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right] \\
\boldsymbol{H}(\boldsymbol{r}, t) & =\boldsymbol{H}_{0} \exp \left[\mathrm{i}\left(k_{0} \boldsymbol{\sigma} \cdot \boldsymbol{r}-\omega t\right)\right]
\end{aligned}
$$

Let $\boldsymbol{\sigma}=\mathrm{i} \sigma_{x} \widehat{\boldsymbol{x}}+\sigma_{z} \hat{\boldsymbol{z}}$, while $\boldsymbol{E}_{0}=E_{x 0} \widehat{\boldsymbol{x}}+E_{y 0} \widehat{\boldsymbol{y}}+E_{z 0} \widehat{\boldsymbol{z}}$ and $\boldsymbol{H}_{0}=H_{x 0} \widehat{\boldsymbol{x}}+H_{y 0} \widehat{\boldsymbol{y}}+H_{z 0} \hat{\mathbf{z}}$. In general, σ_{x} and σ_{z}
 are real-valued, while \boldsymbol{E}_{0} and \boldsymbol{H}_{0} are complex.
a) What is the relationship between σ_{x} and σ_{z} ?
b) What does Maxwell's first equation say about the relation between $E_{x 0}$ and $E_{z 0}$?
c) What does Maxwell's $4^{\text {th }}$ equation say about the relation between $H_{x 0}$ and $H_{z 0}$?
d) What is the relation between $\left(E_{x 0}, E_{y 0}, E_{z 0}\right)$ and $\left(H_{x 0}, H_{y 0}, H_{z 0}\right)$ based on Maxwell's $3^{\text {rd }}$ equation?
e) If $E_{z 0}=0$, which components of \boldsymbol{E}_{0} and \boldsymbol{H}_{0} will vanish as well?
f) If $H_{z 0}=0$, which components of \boldsymbol{E}_{0} and \boldsymbol{H}_{0} will vanish as well?

PhD Qualifying Exam, Fall 2021

Opti 501

System of units: SI (or MKSA)

2) Two counter-propagating, linearly-polarized, homogeneous plane waves, both having frequency ω and wavelength λ_{0}, are trapped in the freespace region between a pair of perfectly conducting mirrors, as shown. The mirrors are parallel to the $x y$-plane, their separation d being an integer-multiple of $\lambda_{0} / 2$. The propagation directions are $\boldsymbol{\sigma}=\hat{\mathbf{z}}$ and $\boldsymbol{\sigma}^{\prime}=-\hat{\mathbf{z}}$. The (complex) E-field amplitudes $E_{x 0}=\left|E_{x 0}\right| \exp \left(\mathrm{i} \varphi_{0}\right)$ and $E_{x 0}^{\prime}=\left|E_{x 0}^{\prime}\right| \exp \left(\mathrm{i} \varphi_{0}^{\prime}\right)$ have equal magnitudes; that is, $\left|E_{x 0}\right|=\left|E_{x 0}^{\prime}\right|$.

a) Write expressions for the total E - and H-fields in the cavity between the mirrors. (These expressions can be further simplified by taking into account the conditions at the mirrors.)
b) In terms of $\left|E_{x 0}\right|$, find the magnitude of the surface-current-density $J_{s 0} \widehat{x}$ on the mirror surfaces.
c) Determine the total E - and H-field energies trapped within the cavity. Show that, at those instants of time when the E-field energy is zero, the H-field energy is at a maximum, and vice-versa.
d) Write an expression for the Poynting vector $\boldsymbol{S}(z, t)$ inside the cavity. Interpret the oscillations of $\boldsymbol{S}(z, t)$ at a fixed location in space as time varies during each oscillation period.
Hint: $\quad \cos a+\cos b=2 \cos [1 / 2(a+b)] \cos [1 / 2(a-b)] ;$

$$
\cos a-\cos b=-2 \sin [1 / 2(a+b)] \sin [1 / 2(a-b)] .
$$

