Fall 2015 Written Comprehensive Exam Opti 501

System of units: MKSA

2 Pts a) The charge-current continuity equation is written

 $\nabla \cdot \boldsymbol{J}(\boldsymbol{r},t) + \partial \rho(\boldsymbol{r},t) / \partial t = 0.$

Explain in a few sentences the physical meaning of the equation and also the meaning of the various terms and symbols that appear in the equation. Specify the units of J and ρ .

- 3 Pts b) Derive the charge-current continuity equation for free charge-density ρ_{free}(*r*, *t*) and free current-density *J*_{free}(*r*, *t*) from Maxwell's *microscopic* equations.
 Note: The microscopic equations of Maxwell do *not* contain polarization and magnetization.
- 2 Pts c) Write down the definitions of bound electric charge-density and bound electric currentdensity, then relate them to each other via the corresponding continuity equation.
- 3 Pts d) Derive the charge-current continuity equation for bound electric charge and bound electric current from Maxwell's *macroscopic* equations.

Note: You may now set $\rho_{\text{free}} = 0$ and $J_{\text{free}} = 0$ in Maxwell's macroscopic equations.

Fall 2015 Written Comprehensive Exam Opti 501

System of units: MKSA

A monochromatic, linearly-polarized, homogeneous plane-wave is normally incident on a slab of transparent dielectric material of thickness d and (real-valued) refractive index n, as shown.

3 Pts a) Write expressions for the *E*- and *H*-fields in the medium of incidence (air), in the dielectric slab, and in the region below the slab, in which the transmitted beam emerges.

(You may assume $\mu = 1$, incident angular frequency = ω , speed of light in vacuum $c = 1/\sqrt{\mu_0 \varepsilon_0}$, and impedance of free space $Z_0 = \sqrt{\mu_0/\varepsilon_0}$.)

- 2 Pts b) Match the boundary conditions at the top surface (z = 0) and at the bottom surface (z = -d) of the slab in order to arrive at relations among the various unknown parameters.
- 2 Pts c) Find expressions for the Fresnel reflection and transmission coefficients $\rho = E^{(r)}/E^{(i)}$ and $\tau = E^{(t)}/E^{(i)}$ in terms of *n*, *d*, ω , and *c*. (Note: In air, the incident wavelength is $\lambda_0 = 2\pi c/\omega$.)
- 2 Pts d) Under what circumstances will the reflectance $R = |\rho|^2$ of the slab be at a minimum? What is the value of R_{\min} ?
- 1 Pt (e) When will the reflectance of the slab be at a maximum, and what is the value of R_{max} ?