Fall 2013 Written Comprehensive Exam Opti 501

System of units: MKSA

A homogeneous, monochromatic plane-wave arrives at normal incidence on a perfect electrical conductor coated with a dielectric layer of thickness *d*, as shown. The boundary between the dielectric and the perfect conductor is the *xy*-plane at z = 0. The refractive index of the dielectric is given by $n(\omega) = \sqrt{\mu(\omega)\varepsilon(\omega)}$, where the relative permittivity $\varepsilon(\omega)$ is real-valued and greater than 1.0, while the relative permeability $\mu(\omega)$ may, as usual, be set equal to 1.0 at optical frequencies. Inside the dielectric layer, the (real-valued) *E*-field amplitude is given by $\mathbf{E}(\mathbf{r}, t) = E_1 \hat{\mathbf{x}} \sin(k_1 z + \varphi_1) \cos(\omega_0 t)$.

- 1 Pt a) Use the relevant boundary condition at the surface of the perfect conductor to determine the value of φ_1 .
- 2 Pts b) Use Maxwell's equation $\nabla \times E(\mathbf{r},t) = -\partial \mathbf{B}(\mathbf{r},t)/\partial t$ to determine the *H*-field amplitude $H(\mathbf{r},t)$ inside the dielectric.
- 2 Pts c) Use Maxwell's equation $\nabla \times H(\mathbf{r},t) = J_{\text{free}}(\mathbf{r},t) + \partial \mathbf{D}(\mathbf{r},t)/\partial t$ in conjunction with the results obtained in parts (a) and (b) to determine the propagation constant k_1 in terms of ω_0 , $n(\omega_0)$, and c, the speed of light in vacuum.
- 1 Pt d) Show that the remaining Maxwell equations, $\nabla \cdot D(\mathbf{r}, t) = \rho_{\text{free}}(\mathbf{r}, t)$ and $\nabla \cdot B(\mathbf{r}, t) = 0$, are automatically satisfied.

In the free-space region z > d, The *E*-field amplitude is $E(\mathbf{r}, t) = E_0 \hat{\mathbf{x}} \sin(k_0 z + \varphi_0) \cos(\omega_0 t)$. (This standing wave is the result of interference between the incident and reflected plane-waves.)

- 2 Pts e) Use Maxwell's equations as before to determine $H(\mathbf{r}, t)$ in the free-space region, and also to relate the propagation constant k_0 to ω_0 and c.
- 2 Pts f) Invoke the relevant boundary conditions at z = d, the interface between free-space and the dielectric layer, to relate E_1/E_0 and φ_0 to the various parameters of the system.

$$\nabla \cdot \boldsymbol{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}.$$
$$\nabla \times \boldsymbol{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{\boldsymbol{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{\boldsymbol{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{\boldsymbol{z}}.$$

Fall 2013 Written Comprehensive Exam Opti 501

System of units: MKSA

In the free-space region between two perfectly electrically conducting parallel plates, a guided electromagnetic wave propagates along the *z*-axis, as shown. The plates are separated by a distance *d* along the *x*-axis, and the guided wave is single-mode, monochromatic, and *p*-polarized. The (real-valued) magnetic field of the guided mode is $H(\mathbf{r}, t) = H_0 \hat{\mathbf{y}} \cos(k_x x) \sin(k_z z - \omega_0 t)$.

- 2 Pts a) Use Maxwell's equation $\nabla \times H(\mathbf{r},t) = J_{\text{free}}(\mathbf{r},t) + \partial \mathbf{D}(\mathbf{r},t)/\partial t$ to determine the *E*-field profile of the guided mode.
- 2 Pts b) Use Maxwell's equation $\nabla \times E(\mathbf{r}, t) = -\partial \mathbf{B}(\mathbf{r}, t)/\partial t$ to determine the relationship among k_x , k_z , ω_0 , and c, the speed of light in vacuum.
- 2 Pts c) What values of k_x are admissible if the guided mode is to satisfy the boundary conditions at the inner surfaces of the perfect conductors?
- 3 Pts d) Find the surface charge and current densities $\sigma_s(x = \pm \frac{1}{2}d, y, z, t)$ and $J_s(x = \pm \frac{1}{2}d, y, z, t)$ at the inner surfaces of the perfect conductors.
- 1 Pt e) Show that σ_s and J_s obtained in part (d) satisfy the charge-current continuity equation.

$$\nabla \cdot \boldsymbol{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}.$$
$$\nabla \times \boldsymbol{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \hat{\boldsymbol{x}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \hat{\boldsymbol{y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \hat{\boldsymbol{z}}.$$